

Homeopathy 2024; 113(01): A1-A26
DOI: 10.1055/s-0044-1779788

Presentation Abstracts

Poster Abstracts

Solvatochromic Dyes as a Tool for Tracking Homeopathic Complex Activity in Water Reservoirs of a Spring Park in Brazil

Leoni Bonamin

‘ **Nathalia Salles**

‘ Sergio Frana

‘ Monica Filomena Souza

‘ Ivana Suffredini

‘ Steven Cartwright

> [Author Affiliations](#)

> [Further Information](#)

Solvatochromic dyes are physicochemical markers of homeopathic medicines. Herein, methylene violet was selected from a pilot study to identify the homeopathic complex (*Arnica montana* 30cH, *Phosphorus* 30cH, *Arsenicum album* 30cH, *Ignatia amara* 30cH, and *Staphysagria* 30cH) designed specifically to be used in the park Nascentes do Rio Taquari at the request of IMASUL, intending to facilitate the ecosystem's bioresilience after being burned down in September 2020. In Brazil, there are no legal restrictions on using dynamized products in the natural environment. The complex was soaked in biodegradable inert gel set at nine strategic points in the park. Water samples were collected at each point at different times, before and after the insertion of the complex. Then, they were filtered through a 0.22 Micra mesh filter for sterilization, and frozen. For analysis, 1cH potencies of each thawed water sample were prepared using 30% ethanol as solvent. The ready-made samples were added to methylene violet dye in a 1:60 ratio in microplates and read in an ELISA reader at a wavelength of 598 nm. Statistical analysis was performed by the Shapiro-Wilk normality test, and parametric or nonparametric ANOVA, being $p \leq 0.05$. Significant differences were seen between samples of the complex and controls (3% alcohol and *Ethylicum* 1cH), both in the presence of methylene violet prepared in water at pH = 4.0 ($p = 0.015$) or in ethanol P.A. ($p = 0.03$). Only samples collected from Point 02 showed statistical significance between times before and after treatment, using methylene violet prepared in water pH = 4.0 ($p \leq 0.05$) or ethanol P.A. ($p \leq 0.05$). Given that Point 02 is close to the source and the others are points with greater water flow, one can speculate about the role of water turbulence in signal stability as a function of time. The findings partially reproduce those obtained previously.

Keywords: Environment, eco-homeopathy, solvatochromic dyes, water

Publication History

Article published online:
30 January 2024

© 2024. Faculty of Homeopathy. This article is published by Thieme.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany