

SESSION PROPOSAL 2024 IADR Annual Meeting & Exhibition
New Orleans, USA

- 1. TITLE: Interface Between Oral Biology and BioMaterials**
- 2. DESCRIPTION:** The interactions between materials, tissues, and organisms at the cellular and molecular levels are critical for advancing the development of the next generation of materials with improved biological properties. Material chemistries and properties can be fine-tuned to modulate biological responses, transform living systems toward regeneration, and prevent dysbiosis and tissue destruction. This workshop will discuss the potential of biomaterials to interact with living organisms and modulate cell and tissue responses.

3. SPONSORING SCIENTIFIC GROUP/NETWORK: Dental Materials

4. EDUCATOR/CLINICIAN TRACKS:

This proposal is of equal interest to both academic and clinical researchers.

5. FORMAT:

Five speakers (15 min presentation) followed by a Q&A session between the audience and speakers and closing remarks (10 min)

6. LEARNING OBJECTIVES

- a. Exploring Biomaterial Applications: Explore how biomaterials can modulate cell and tissue responses, promote regeneration, and prevent issues like dysbiosis and tissue destruction in living systems
- b. Fine-tuning material properties to modulate biological responses inspires novel materials and techniques. Furthermore, the focus on preventing dysbiosis and tissue destruction is integral to biomaterial innovation.

7. PROPONENTS

Vinicius Rosa (Organizer/Chair)

Associate Professor, Faculty of Dentistry, National University of Singapore, Singapore

Adriano Lima (Chair)

Professor, School of Dentistry, Health Science Institute, Paulista University, São Paulo, SP, Brazil.

Symposium Speakers:

- 1) Adriano F. Lima, School of Dentistry, Health Science Institute, Paulista University, São Paulo, SP, Brazil.**

Title: Cell analysis for determination of the cytotoxicity of dental materials

Summary: Dental materials used in various dental specialties must offer optimal clinical performance, longevity, and minimal side effects on oral tissues. Evaluating the cytotoxicity of these materials is vital for validating their clinical applications. Dental resins, in particular, pose a challenge due to the numerous compounds in each formulation and their diverse applications. Assessing the cytocompatibility of dental materials depends on the intended use of the material or compound. This choice directly influences the selection of cell types for experiments. Additionally, the cell response should align with the material's application, extending beyond just assessing cell metabolism. For instance, cells may increase cytokine levels without affecting mitochondrial metabolism or cell death rates after exposure to a material. Even without impacting cell metabolism, such materials are far from inert. This presentation will delve into key parameters for assessing the cytotoxicity of dental materials, considering cell characteristics and chemical analysis. It aims to guide researchers toward more suitable and relevant study designs to ensure the safety and effectiveness of these materials in various dental applications.

2) Denise Carleto Andia, School of Dentistry, Health Science Institute, Paulista University, São Paulo, SP, Brazil

Title: The plasticity of molecular mechanisms on the biological effects of a biomaterial.

Synopsis: Studies have revealed variations in cell responses to different environmental challenges, such as biomaterials or regenerative therapies. These variations are linked to the unique molecular patterns expressed by cells and should be taken into account in clinical approaches. Various methods can be employed to assess biological effects in specific cell types, ranging from genome-wide screening to molecular and biochemical analyses. In the context of bone regeneration and implantology, biomaterials can enhance mineral deposition, cell proliferation, and adhesion. Molecular assays provide insights into potential molecular targets like proteins and genes that can be influenced by specific materials, contributing to the resolution of clinical issues. Molecular responses, when combined with cellular and morphological evaluations, should be conducted, considering their limitations, advantages, and disadvantages in interpreting results. Therefore, it's crucial to adopt

a well-planned approach that incorporates molecular methods alongside other experimental techniques to achieve a more comprehensive analysis that can inform clinical applications. This presentation will center on molecular aspects that enhance our comprehension of the biological effects of biomaterials, taking into account cell phenotypes in certain clinical approaches.

3) Nileshkumar Dubey, Faculty of Dentistry, National University of Singapore, Singapore

Title: Shaping Dental Biomaterials: The Impact of Biointerfaces on Bioactivity and Cellular Differentiation Outcomes.

Summary: Biointerfaces represent the dynamic interfaces where biomaterials, such as implants and scaffolds, meet the biological milieu within the oral cavity. The development of advanced biomaterials for dental application necessitates precise control over interfacial properties that influence cellular and biomolecular behaviours. These properties, including nano and micro-scale roughness, mechanical characteristics, chemical signals and many more are crucial factors sensed by cells, impacting their responses. For instance, culturing stem cells in environments designed to mimic the bone extracellular matrix composition results in the expression of tissue-specific transcription factors, driving their commitment to an osteogenic fate. The presentation will talk about the strategies used to engineer these interfaces for enhanced biological responses, fostering enhanced tissue regeneration or implant integration for improved dental treatments. Furthermore, it will highlight their potential to modulate cellular behaviour, guiding the development of advanced dental materials for more efficient and personalized clinical applications.

4) James Tsoi, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China

Bio-active vs bio-inactive - a tug of war on dental (bio)materials

Over the years, the development of dental (bio)materials has an ultimate goal - to be functional in certain aspects, such as restoring missing (or a part of) tooth with good mechanical and aesthetic properties. However, the oral cavity is a challenging environment that contains a variety of microbes, enzymes, temperature changes and so on. Thus, the oral cavity is not easily simulated in a laboratory environment. This

said, placing materials in the oral cavity has induced other diseases such as secondary caries and peri-implantitis that have not been expected and predicted. New (bio)materials have started to develop and are claimed to have other functions such as bio-active and bio-inactive in combating these new diseases - isn't it a loop? This presentation will discuss whether a balance of these properties can be achievable, and will discuss the future of design of dental materials including some frontier techniques such as data-driven artificial intelligence.

5) Sung-Hwan Choi, Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea

Title: Antifouling Bioactive Materials using Zwitterions

Summary: Oral biofilm consists of more than 700 different types of microorganisms and extracellular polymeric substances (EPS). Because of EPS, conventional physical and chemical methods have limitations in removing biofilms once they have matured thickly. Therefore, I would like to introduce the antifouling effect that prevents bacterial contamination by functionalizing the material surface using zwitterionic polymers (ZP) at the initial biofilm maturation stage. If a thick hydration shell is formed on the material surface via ZP, it is possible to resist the adhesion of salivary proteins and oral harmful bacteria, and the prevention of enamel demineralization. When multiple ZPs are grafted onto the material surface simultaneously under biological conditions such as saliva, an anti-polyelectrolyte effect occurs accompanied by swelling of the ZP brushes, and hydration enhancement due to weakened inter- and intra-polymer interactions to achieve maximum antifouling effect. In addition, multiple ZP can act as a multivalent zwitterionic network modifier (α -mZM) for the upregulation of ionic exchange when incorporated with bioactive materials such as glass ionomer cements. Using bioactive materials with ZPs, antifouling effects by hydration shell resist bacterial contamination and normalized microbiome community. Also, due to increasing ion-releasing channels, eluted ions support neutral pH and remineralization potential.

INTERNATIONAL ASSOCIATION
FOR DENTAL, ORAL, AND
CRANIOFACIAL RESEARCH

**2024 IADR/AADOCR/CADR GENERAL SESSION & EXHIBITION
SESSION PROPOSAL PRESENTER AUTHORIZATION FORM**

The International Association for Dental, Oral, and Craniofacial Research seeks submission of session proposals to be presented and recorded as part of the IADR/AADOCR/CADR General Session & Exhibition (March 13-16, 2023) in New Orleans, Louisiana. As part of the 2024 General Session, session recordings will be available for access by attendees and on demand through an IADR partner. The sessions will be recorded and available for up to one year after the conclusion of the General Session for continued participation by meeting attendees virtually within the IADR meeting platform. All session proposals accepted into the 2024 General Session program are required to agree to be included in the meeting platform and to complete all necessary tasks, including signing this agreement.

If the session opts in, the recorded presentations will also be made available after the General Session within the IADR CE On Demand Library. This IADR hosted Web site is a member benefit of all IADR members and is available for purchase by non-members. Individuals can access meeting recordings and claim continuing education credit by viewing and completing a quiz. Content will remain available within the IADR CE On Demand Library until a time to be determined by IADR. Content will be marketed exclusively through IADR with assistance from their third-party vendors. Inclusion in the IADR CE On Demand Library is voluntary and not a requirement of participation in the 2024 General Session. If you agree to contributing, check the appropriate box at the bottom of this agreement. Every presenter in a session is required to complete their own form.

AUTHORIZATIONS

IADR requests your permission to stream your presentation to virtual attendees and record your presentation for viewing after the conclusion of the session as part of the General Session. These recordings will include video, audio, Power Point slides and any other visuals utilized in your presentation. The presentation will be distributed and available to attendees interested in your field via the IADR meeting platform, allowing your colleagues to benefit from your remarks if unable to attend the session in person.

I understand that my presentation will be recorded, and I hereby grant permission for IADR to include my presentations and all comments and content contained therein in these streams and recordings. I agree that IADR has the right to use my name, image, likeness, appearance, voice, statements and pronouncements made in my presentation, any photographs bearing my image and taken as part of the session, and any and all biographical material submitted by me (including email) in connection with the conference named above, whether used in excerpts or in full, for purposes of the reproduction and distribution described above.

I hereby irrevocably grant and license to IADR the right to distribute, translate, reformat and/or reprocess my presentation for purposes of posting through the IADR meeting platform, and in any advertising, promotional and publicity related thereto.

Except in the event that presenter has not secured the necessary permissions or licenses to use materials owned by third parties, IADR hereby releases and discharges the signing presenter from direct or indirect liability arising from the streaming, recording and distribution of the presentation via the IADR meeting platform or website. Except as otherwise provided herein, IADR agrees to indemnify and hold harmless presenter against any and all claims, damages, of any kind, and losses, expenses, costs and attorneys' fees whether under tort or contract law, arising out of any claims of trademark infringement due to the use of IADR and IADR division trademarks on its website and in connection with the reproduction of the presentation. Presenter agrees to indemnify and hold harmless IADR, its officers, directors, employees and affiliates and their respective successors and assigns against any and all claims, damages, of any kind, losses, expenses, costs and attorneys' fees arising out of any claims of trademark or copyright infringement in the presentation, due to presenter's unauthorized use of a third party's trademarks or copyright therein and inability to secure any and all necessary permissions or licenses to use such materials, or for any acts that otherwise infringe on another's intellectual property, including trade secrets, or acts that slander, libel, defame, disparage, embarrass, ridicule, or infringe on a person's right of publicity and/or privacy.

IADR hereby grants presenter with a royalty-free, limited, non-exclusive, worldwide, non-assignable, non-transferable, and revocable license to use the IADR and IADR division trademarks on the presentation and for use in connection with the reproduction of the presentation by presenter on his/her personal or corporate website and for the reproduction and distribution of the presentation to colleagues, for teaching duties or for oral presentations based on the presentation. Presenter is not permitted to use the IADR or IADR division trademarks for any other purpose, including the reproduction of the presentation in any publication or website, except as previously specified, without prior written consent from IADR.

In the event that any materials used in my presentation contain the work of other individuals or organizations (including any copyrighted material), I understand that it is my responsibility to secure any necessary permissions and/or licenses or to inform IADR immediately if such permission and /or license could not be obtained.

I hereby authorize IADR to stream and record the presentation for which I am the presenter as part of the 2024 IADR/AADOCR/CADR General Session & Exhibition to include video, audio, slides, and any other visuals used in my presentation and post it on an IADR hosted meeting platform and Web site for as long as one year after the conclusion of the meeting.

Additionally, by checking this box, I authorize IADR to include the recording of my presentation within the IADR CE On Demand Library to be accessed by IADR members and non-members who purchase access to the meeting after the General Session for a period determined by IADR. I agree that all license rights and other obligations that I have agreed to in this Presenter Authorization Form will also apply to the recording of my presentation within the IADR CE On Demand Library.

Signature: Date: _____

Printed Name: _____

Presentation Title: _____