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RESUMO 

 

O desenvolvimento da prole é influenciado de muitas maneiras pela geração 
parental, incluindo não apenas a transmissão de DNA, mas também suas marcas 
epigenéticas, ambientais e comportamentais. Dentre os fatores implicados no 
controle epigenético está a dieta. O histórico alimentar das fêmeas, incluindo 
infância e adolescência, também pode impactar em mudanças fenotípicas da futura 
prole. Neste trabalho, demonstramos que ratos nascidos de mães alimentadas com 
dieta hipercalórica (HD) líquida e altamente palatável (Ensure ®), durante a 
puberdade (23-65 dias de idade), apresentaram alterações fenotípicas adaptativas 
tardias, como tendência a sobrepeso na idade adulta, pelo aumento de gordura 
retroperitoneal (RPF) e do número e área de adipócitos hipodérmicos, e dos níveis 
plasmáticos de fator de necrose tumoral (TNF-alfa), ocorrendo, porém, redução da 
área de processos astrocitários no hipotálamo. Curiosamente, esses animais 
também apresentaram resposta diferenciada do sistema nervoso central (SNC) ao 
desafio por lipopolissacarídeo (LPS), sendo mais resistentes a desenvolver 
comportamento doentio. Também demonstramos que ratos de duas gerações (F1 e 
F2) com dieta normal, cujas avós (geração F0) foram submetidas a 40% de restrição 
alimentar entre os dias 15 -18 da gestação, apresentaram alterações hipotalâmicas 
fenotípicas, na prole, compatíveis com maior sensibilidade à neuroinflamação, 
indicando claramente a tendência desses em acumular gordura subcutânea, 
principalmente na geração F2. 
 
 
Palavras chaves: adipócitos, astrócitos, sistema imune, intergeracionais, nutrição 
materna, comportamento. 
 

 

 

 

 

 



 
 

ABSTRACT 

 

The development of the offspring is affected in many ways by the parental 
generation, comprising not only transmission of DNA, but also their epigenetic marks, 
environmental and behavioral. Diet is one of the factors related to epigenetic control. 
The dietary history of females, including childhood and adolescence, it can also 
impact on phenotypic changes in future offspring. In this study we demonstrate that 
rats born to mothers fed with liquid and highly palatable hypercaloric diet (Ensure ®) 
during puberty (23-65 days old) presented delayed adaptive phenotypic alterations, 
such as tendency to overweight in adulthood caused by increase of retroperitoneal 
fat and the number and area of hypodermic adipocytes, and plasma levels of tumor 
necrosis factor (TNF-alpha), but reducing the area of astrocytic processes in the 
hypothalamus. Interestingly, these animals also presented different responses in the 
central nervous system (CNS) related to challenge by lipopolysaccharide (LPS), 
being more resistant to developing sickness behavior. We also demonstrated that 
rats of two generations (F1 and F2) on a normal diet, which the grandparents (F0 
generation) were submitted to 40% food restriction between 15 -18 days of gestation 
showed phenotypic changes in hypothalamic offspring compatible with higher 
sensitivity neuroinflammation and clearly indicating the trend of accumulating 
subcutaneous fat mainly in the F2 generation. 
 
 
Key words: adipocytes, astrocytes, immune system, intergenerational, maternal 
nutrition, behavior. 
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1. INTRODUÇÃO 

 

1.1 Efeitos transgeracionais e epigenética  

 

O desenvolvimento da prole é influenciado de muitas maneiras pela geração 

parental, incluindo não apenas a transmissão de DNA, mas também suas marcas 

epigenéticas, ambientais e comportamentais. Os mecanismos pelos quais os pais 

afetam o desenvolvimento da prole, além da transferência de DNA, são conhecidos 

como efeitos parentais ou herança não genética. Esses mecanismos incluem a 

transferência de padrões epigenéticos, nutrientes, anticorpos, hormônios e, também, 

as interações comportamentais pós-natais. Tal fenômeno pode ser observado 

também em plantas, portanto sua compreensão é igualmente útil para o 

gerenciamento da saúde ambiental (SZYF e BICK, 2013; ENGLISH et al., 2015; 

SCHWINDT, 2015). 

Uma parte significativa da herança não genética se deve aos mecanismos 

epigenéticos. Historicamente, os estudos sobre epigenética começaram com 

Waddington, em 1942, Nanney, em 1957, e, nos meados dos anos setenta, com 

Riggs e Holiday (BURGGREN, 2015).  Esses pesquisadores descreviam epigenética 

como alterações fenotípicas que podiam ou não ser transmitidas entre gerações, 

sem mudanças na sequência dos genes (BURGGREN, 2015). 

Atualmente, o termo epigenética é usado para descrever modificações 

químicas da cromatina, que incluem as modificações das histonas (isto é, acetilação, 

metilação, fosforilação), a metilação e desmetilação do DNA (BLAZE e ROTH, 

2015), bem como a atividade regulatória da expressão gênica por microRNA ou RNA 

não codificador (JABLONKA e LAMB, 2005; ROSS e DESAI, 2013). Assim, o 

controle epigenético é a soma dos fatores genéticos e não genéticos que controlam 

seletivamente a expressão dos genes, produzindo, assim, o aumento da 

complexidade fenotípica durante o desenvolvimento (SILVA, 2013; SZYF e BICK, 

2013; BURGGREN, 2015).  

O mecanismo primário epigenético é a metilação do DNA. No embrião, o DNA 

é hipometilado e, em resposta à sinalização ambiental à metilação, aumenta 

progressivamente, o que implica silenciamento transcricional. O mecanismo 

secundário, por sua vez, corresponde a modificações de histonas, e o terciário está 
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relacionado à atividade de RNA não codificante. Ambos são capazes de modular a 

expressão gênica (ROSS e DESAI, 2013; YAN, 2014). 

 

Figura 1- Ilustra os três principais mecanismos de regulação epigenética. I- 

Metilação de DNA, II- Modificação de Histonas e III- Atividade de RNA não 
codificante  

 

Fonte: Ross e Desai (2013). 

 

Os efeitos da epigenética podem ser classificados em duas categorias: 

“contexto-dependente” e “linha germinativa-dependente”. A primeira deriva da 

herança epigenética que afeta o fenótipo, como resultado da exposição direta e 

contínua, dentro ou entre gerações, a um estressor ambiental. Enquanto o estressor 

está presente, o fenótipo continua modificado. E a segunda deriva da modificação 

direta da linha germinativa e suas modificações fenotípicas persistem através de 

gerações, mesmo sem a presença direta de um agente estressor ambiental (SZYF e 

BICK, 2013; BURGGREN e CREWS, 2014; BURGGREN, 2015; FINEGERSH et al., 

2015).   
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1.2 Efeitos transgeracionais da dieta 

 

Dentre os fatores estressores implicados no controle epigenético está a dieta. 

Exposições nutricionais precoces afetam o fenótipo da prole, incluindo desde 

situações restritivas até diferentes fontes de carboidratos de alta disponibilidade, 

como o álcool (RAO et al., 2012; VICKERS, 2014; DESAI et al., 2015; FINEGERSH 

et al., 2015). 

Durante a gravidez e o período neonatal, o indivíduo responde ao seu 

ambiente por meio da criação de trajetórias anatômicas, fisiológicas e bioquímicas, 

que moldam sua futura saúde. Por exemplo, a subnutrição perinatal leva à redução 

do peso do encéfalo e do corpo, conforme descrito por Perez-Torrero e 

colaboradores, em 2003 (PEREZ-TORRERO et al., 2003). Nesse período, 

estabelece-se uma plasticidade de processos fisiológicos capaz de preparar o 

indivíduo para possíveis agressões ambientais relacionadas à alimentação, levando 

ao risco de obesidade e outros problemas correlatos (MACAULAY et al., 2014). 

Tanto a desnutrição como a supernutrição materna podem programar na prole a 

obesidade e a síndrome metabólica (ROSS e DESAI, 2013; AIKEN e OZANNE, 

2014; DESAI et al., 2015; SKINNER, 2015). A maior parte dos artigos constantes na 

literatura mostram os efeitos transgeracionais da alimentação materna durante a 

gestação; contudo, o histórico alimentar das fêmeas, incluindo infância e 

adolescência, também pode impactar em mudanças fenotípicas da futura prole. É o 

que demonstramos neste trabalho. 

Por outro lado, problemas de prematuridade e deficiência de crescimento 

intrauterino também podem potencializar desvios metabólicos nas gerações 

seguintes. Assim, a sobrevida de recém-nascidos prematuros e com crescimento 

deficiente favorece o desenvolvimento de obesidade no adulto, que pode ser 

potencializada com dieta excessiva, respeitando o padrão de fenótipo econômico, 

conforme descrito por Hales e Barker, 2001. As gerações seguintes, por 

consequência, também apresentarão desvios metabólicos por efeito transgeracional, 

o qual pode se dar por via materna ou paterna (MARTINEZ et al., 2012; HALES e 

BARKER, 2013; VICKERS, 2014; DESAI et al., 2015). 

O tamanho do corpo, bem como a estruturação do sistema endócrino e do 

perfil metabólico na prole, é resultante de uma combinação de estímulos, que 

incluem a qualidade do ambiente pós-natal e o fluxo transplacentário de mediadores 
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químicos, que informam o feto sobre o estado nutricional da mãe, permitindo a 

adaptação do indivíduo às condições do meio para enfrentar ambientes com 

restrição nutricional ou alto gasto de energia. Quando submetidos a ambientes 

diferentes do programado, tais indivíduos podem desenvolver doenças na fase 

adulta, como diabetes e síndrome metabólica (RIBEIRO et al., 2015). 

 

Figura 2- Ilustra a programação gestacional da população que desloca para a 
obesidade e síndrome metabólica (DESAI et al., 2015). IUGR = restrição de 

crescimento intrauterino. 
 

Fonte: Desai (2015). 

 

1.3 Restrição alimentar, sobrepeso, obesidade e SNC 

 

Taxas globais de sobrepeso e obesidade têm aumentado rapidamente nos 

últimos 30 anos, afetando o sistema de saúde pública, a economia e a sociedade. 

Mundialmente, a prevalência de sobrepeso e obesidade é de 27,5% nos adultos e  

47,1% nas crianças nascidas entre 1980 e 2013 (HAIDAR e COSMAN, 2011; 

BERENSON, 2012; KITZINGER e KARLE, 2013; MACAULAY et al., 2014). Isto afeta 

a qualidade de vida e eleva os índices de mortalidade (FORMIGUERA e CANTON, 

2004; RODRIGUEZ-HERNANDEZ et al., 2013), pois os indivíduos que estão com 

sobrepeso e obesos têm risco aumentado para várias doenças, incluindo diabetes 

tipo 2, doenças respiratórias, doenças cardiovasculares, distúrbios endócrinos, 
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disfunção imune, certos tipos de câncer, transtornos psiquiátricos e diminuição da 

fertilidade (FORMIGUERA e CANTON, 2004; HASLAM e JAMES, 2005; ABALLAY 

et al., 2013; ALEMAN et al., 2014). 

A obesidade crônica está geralmente associada a um processo inflamatório 

permanente (BUCKMAN et al., 2013). Adipócitos hipodérmicos (HAS) produzem 

várias adipocinas (leptinas, adiponectina, resistina, etc.) e mais de 50 hormônios, de 

forma autócrina, parácrina ou endócrina, que atuam tanto positiva como 

negativamente em processos inflamatórios sistêmicos, com a participação de 

macrófagos, linfócitos e citocinas diversas, tais como fator de necrose tumoral alfa 

(TNF alfa) e interleucina 6 (IL 6). As citocinas e alguns hormônios, como a leptina, 

também regulam a expressão gênica envolvida no controle metabólico. Assim, o 

TNF alfa e a leptina são marcadores epigenéticos deste processo (MARTINEZ et al., 

2012; MAKKI et al., 2013; RODRIGUEZ-HERNANDEZ et al., 2013). Os efeitos 

sistêmicos da obesidade, em geral, levam à síndrome metabólica, que é 

caracterizada por inflamação crônica de baixo grau em vários tecidos, como fígado, 

pâncreas, músculos, vasos, coração, sistema reprodutivo e encéfalo, incluindo o 

hipotálamo (ANDEL et al., 2009; LI et al., 2011; GARCIA-CACERES et al., 2013). 

A inflamação hipotalâmica ocorre mesmo antes do ganho de peso corporal 

(BW) (GARCIA-CACERES et al., 2013; GUYENET et al., 2013). No hipotálamo, a 

micróglia e os astrócitos produzem citocinas que induzem respostas inflamatórias. 

Devido a sua proximidade física com os vasos sanguíneos e seu papel no transporte 

de substâncias, os astrócitos são diretamente afetados pelo excesso de nutrientes 

(GARCIA-CACERES et al., 2013). Os astrócitos são as células mais abundantes no 

sistema nervoso central (SNC), e suas funções incluem a modulação da atividade 

neuronal, o armazenamento e fornecimento de energia para os neurônios e a 

regulação da barreira hematoencefálica (BUCKMAN et al., 2013; GUYENET et al., 

2013; MAYO et al., 2014). Em resposta a estímulos nocivos, os astrócitos podem 

entrar num estado reativo caracterizado por aumento no número e tamanho de 

células (astrogliose e astrocitose, respectivamente) e por outras alterações 

morfológicas associadas ao aumento da expressão de proteínas do citoesqueleto, 

tais como vimentina, nestina e proteína glial fibrilar ácida (GFAP) (GUYENET et al., 

2013). Assim, os astrócitos podem desempenhar papel único na promoção de 

respostas inflamatórias hipotalâmicas na obesidade (GARCIA-CACERES et al., 

2013; GUYENET et al., 2013; RODRIGUEZ-HERNANDEZ et al., 2013), as quais 
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podem, também, modificar aspectos comportamentais e cognitivos (LI et al., 2011). 

Sabe-se que a depressão e a ansiedade podem estar associadas à neuroinflamação 

(SINGHAL et al., 2014).  

Após a exposição a dietas hipercalóricas, os neurônios do núcleo arqueado e 

eminência média, assim como os astrócitos e a micróglia dessas áreas, expressam 

vários marcadores de dano celular, como TNF alfa, IL 6, supressor de sinalização de 

citocina 3 (SOCS 3), etc. A expressão de GFAP e do receptor do tipo Toll 4 (TLR 4) 

também acompanha o processo de gliose. Esses efeitos são seguidos de expansão 

da massa corporal, caracterizando a antecipação da neuroinflamação em relação ao 

sobrepeso e obesidade, descritos anteriormente. Dessa forma, os astrócitos 

participam da neuroproteção, limitando a extensão da inflamação e da perda de 

neurônios subsequente (THALER et al., 2012). Ao contrário, animais submetidos a 

dieta restritiva expressam menos GFAP em comparação àqueles que recebem dieta 

normal ad libitum. A privação alimentar parcial e constante de 50-70% previne a 

astrogliose excessiva em situações de dano cerebral, por meio da regulação da 

expressão de proteínas envolvidas na plasticidade neural, como a GAP-43 e a 

sinaptofisina (SYP). Ocorre, portanto, a neuroproteção (LONCAREVIC-

VASILJKOVIC et al., 2009). 

O período perinatal, em particular, é especialmente sensível à restrição 

alimentar, pois é quando ocorre a maior parte dos processos de maturação do 

hipotálamo. Mudanças hormonais nesse período podem ser o gatilho de várias 

alterações duradouras no circuito hipotalâmico relacionadas com atividade 

metabólica e balanço de energia corporal. Os neurônios do núcleo arqueado e 

neurônios produtores de pró-opiomelanocortina (POMC) e de peptídeos 

anorexígenos e orexígenos são os mais envolvidos nesse processo. A restrição 

alimentar antes do desmame leva à maior expressão de transdutor de sinal e 

ativador de transcrição 3 (pStat-3) e c-Fos no núcleo arqueado, com consequente 

aumento na sinalização à leptina e aumento da longevidade (SADAGURSKI et al., 

2015). Ao contrário dos efeitos neuroprotetores da restrição alimentar no período 

pós-natal precoce, a restrição alimentar durante a gestação pode induzir alterações 

hipotalâmicas fenotípicas na prole compatíveis com maior sensibilidade à 

neuroinflamação, como demonstramos neste estudo. 
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1.4 Modelos animais 

 

Vários modelos animais têm contribuído para a construção do conhecimento 

acerca dos processos transgeracionais relacionados à dieta. Os roedores são os 

animais mais utilizados para este tipo de estudo, mas há relatos de pesquisas feitas 

em carneiros que mostram os efeitos da obesidade no padrão fenotípico da cria 

(fenótipo econômico). Também em primatas babuínos, a dieta hipercalórica (HD) da 

mãe gera hipertrofia de células adiposas e esteatose hepática na cria, as quais 

permanecem até a idade adulta (TAYLOR e POSTON, 2007; LI et al., 2011). O 

modelo clássico para demonstração da ocorrência de obesidade em ratos nascidos 

de mães privadas de alimento foi descrito em 1984 (JONES et al., 1984). Parte do 

presente trabalho foi baseada nesses estudos, assim, esta tese é dividida em duas 

partes: uma corresponde ao artigo enviado à publicação sobre os efeitos 

transgeracionais da dieta hipercalórica da mãe durante a puberdade e a outra 

descreve os efeitos da privação alimentar parcial durante a gestação nas gerações 

seguintes. Segue abaixo a descrição sucinta de ambos os artigos. 
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2. OBJETIVOS 

  

2.1 Objetivo do Artigo 1 

 

Verificar se a dieta hipercalórica administrada na puberdade de ratas Wistar 

promove efeitos transgeracionais fenotípicos na prole relacionados com acúmulo de 

gordura abdominal, comportamento e neuroinflamação. 
 

2.2 Objetivo do Artigo 2 

 

Verificar se a privação alimentar materna durante a gestação promove efeitos 

transgeracionais fenotípicos, nas gerações seguintes (F1 e F2), relacionados com 

acúmulo de gordura abdominal, comportamento e neuroinflamação. 
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3. RESUMO DOS TRABALHOS 

 

3.1 Artigo 1 – Transgenerational effects of hypercaloric diet 

 

A obesidade crônica está associada a processo inflamatório central e 

periférico persistente. A inflamação hipotalâmica é um dos fatores que antecedem a 

obesidade, envolvendo células como micróglia e astrócitos, sendo esses últimos 

particularmente afetados pelo excesso de nutrientes. Adicionalmente, evidências 

experimentais e clínicas mostram que a programação do desenvolvimento corporal 

pode ser vista como fenômeno transgeracional adaptativo, cujos mecanismos são 

epigenéticos. A alimentação excessiva da mãe pode definir padrões específicos de 

gordura corporal e de parâmetros relacionados ao processo inflamatório e à 

atividade metabólica de sua prole. 

Nesse trabalho demonstramos que ratos nascidos de mães alimentadas com 

dieta hipercalórica líquida e altamente palatável (Ensure ®) durante a puberdade 

(23-65 dias de idade), porém alimentadas com dieta normal durante a gestação, 

apresentam alterações fenotípicas adaptativas tardias. 

As fêmeas da geração parental (F0) foram submetidas à eutanásia após o 

desmame e foram analisados os seguintes parâmetros: peso da gordura 

retroperitoneal (RPF), análise histométrica da gordura hipodérmica e análise 

histométrica dos astrócitos hipotalâmicos. Os machos, filhos da geração F0, 

denominados F1, foram pesados no segundo dia de vida e o ganho de peso durante 

a lactação também foi mensurado. Após o desmame, foram avaliados quanto à 

atividade geral no campo aberto (CA) e alimentados com ração comercial 

balanceada até o dia da eutanásia (50 dias de vida). Quatorze horas antes, metade 

dos animais da geração F1 foi desafiada com 100 microgramas/quilo de LPS, via 

intraperitoneal, e a outra metade foi tratada com solução salina 0,9%. Uma nova 

análise do comportamento no CA foi realizada imediatamente antes da eutanásia 

para avaliação do comportamento doentio e parâmetros motores.  

Na necropsia, a gordura retroperitoneal, a hipoderme abdominal, o encéfalo e 

o sangue foram colhidos de cada animal. As amostras de sangue foram utilizadas 

para a dosagem de diferentes citocinas, neuropeptídios e hormônios. A hipoderme 

abdominal e o encéfalo foram avaliados histologicamente. Os adipócitos 

hipodérmicos foram quantificados segundo duas categorias: células pequenas (até 9 



22 

 

mil pixels) e células grandes (acima de 9 mil pixels). O encéfalo foi seccionado 

látero-lateralmente na altura do hipotálamo para avaliação quantitativa da área 

correspondente aos astrócitos periventriculares positivos ao GFAP.  

Houve aumento do peso corpóreo nas fêmeas (F0) após o período de 

alimentação hipercalórica, acompanhado de aumento muito significativo (P<0,0001) 

da gordura retroperitoneal e da área dos grandes adipócitos hipodérmicos 

(p<0,0001). Nenhuma alteração comportamental foi observada na geração F0, mas 

houve aumento significativo (p=0,001) na positividade dos astrócitos hipotalâmicos 

ao GFAP. 

Na geração F1, observou-se aumento do peso, ao nascimento, nos animais 

nascidos de mães alimentadas com dieta hipercalórica durante a puberdade, 

contudo esses animais apresentaram significante perda de peso ao desmame, a 

qual foi normalizada na idade adulta, exceto aqueles que foram desafiados com 

LPS. Esses animais também apresentaram aumento do peso da gordura 

retroperitoneal em relação ao controle, e esse efeito foi igualmente revertido após o 

tratamento com LPS.  A razão entre número de adipócitos grandes e pequenos 

neste grupo também apresentou aumento significativo (p<0,0001), reforçando a 

constatação de que esses animais tendem a acumular gordura periférica. Não houve 

alteração comportamental nesses animais sem desafio; todavia o comportamento 

doentio induzido pelo LPS no grupo controle foi revertido no grupo experimental.  

Em relação ao perfil inflamatório central, os animais nascidos de mães 

alimentadas com dieta hipercalórica mostram redução significativa na trama de 

processos astrocitários em reação ao controle, mesmo após desafio com LPS. Da 

mesma forma, este grupo apresenta aumento nos níveis plasmáticos de TNF-alfa, os 

quais são igualmente independentes do estímulo com LPS.  

Conclui-se que a geração F0 reproduziu, nesse modelo experimental, os 

dados da literatura pertinente ao assunto. Os resultados da prole são inéditos e 

mostram padrão adaptativo às condições alimentares das mães mesmo antes da 

gestação. Esses padrões são caracterizados por tendência a sobrepeso no adulto, 

pelo aumento de gordura retroperitoneal, e aumento do número e da área de 

adipócitos hipodérmicos, bem como aumento nos níveis plasmáticos de TNF-alfa e 

redução da área de processos astrocitários no hipotálamo. Curiosamente, esses 

animais também apresentaram resposta diferenciada do SNC ao desafio por LPS, 

sendo mais resistentes a desenvolver comportamento doentio.  
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3.2 Artigo 2 – Maternal food deprivation increased the retroperitoneal fat, the 

number and size of adipocytes and induced periventricular astrogliosis in F1 

and F2 generations. 

 

Sabe-se, pela literatura, que alterações da dieta durante a gestação 

interferem no controle metabólico da prole na idade adulta, levando à resistência 

insulínica e tendência ao ganho de peso. Isso pode ser percebido também na 

capacidade de certas estruturas do SNC de desenvolver respostas inflamatórias, 

como ocorre no hipotálamo. A hipertrofia hipotalâmica observada por meio da 

expressão de GFAP é um indicador importante desse processo. 

Nesse estudo, ratas Wistar gestantes foram submetidas à privação alimentar 

em 40%, entre os dias 15 -18 da gestação. Esse período foi escolhido para evitar 

canibalismo e perda da prole no período pós-natal. As fêmeas controle foram 

alimentadas normalmente com ração comercial balanceada. Todas as fêmeas 

(privadas ou não) deram origem às gerações F1 e F2, as quais também foram 

alimentadas normalmente. 

Aos 21 dias de vida, as fêmeas da geração F1 de cada grupo foram divididas 

em dois subgrupos, sendo que metade foi submetida às análises de ganho de peso 

corporal, gordura retroperitoneal, número e tamanho de adipócitos hipodérmicos e 

expressão de GFAP em astrócitos hipotalâmicos até a idade adulta (90-95 dias de 

idade) e a outra metade foi encaminhada à reprodução para dar origem à geração 

de F2. 

Os machos da geração de ambos os grupos foram submetidos às mesmas 

análises, na puberdade (50 dias de idade). As fêmeas de F2 foram usadas em outro 

experimento. 

Os adipócitos hipodérmicos foram analisados histometricamente e divididos 

em duas populações distintas: uma composta de células pequenas (até 9 mil pixels) 

e a outra composta de células grandes (acima de 9 mil pixels). Tanto o tamanho 

quanto o número dessas células foram contabilizados. Os astrócitos e seus 

processos foram mensurados quanto a área de positividade de GFAP a partir de 

cortes histológicos da região periventricular do hipotálamo. 

Durante a gestação, as mães que sofreram privação tiveram redução de mais 

de 50% no ganho de peso. Nos filhotes, o ganho de peso foi menor ao nascimento e 

durante a lactação em ambas as gerações, F1 e F2.  Na idade adulta, o peso dos 
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animais da geração F1 nascidos de mães privadas foi equivalente ao dos 

respectivos controles, mas na geração F2 o peso foi maior que o controle, indicando 

tendência à obesidade ainda mais acentuada. O peso da gordura retroperitoneal foi 

o dobro do controle na geração F1, mas também estava significantemente 

aumentado na geração F2. 

A geração F1 apresentou aumento expressivo no número de pequenos 

adipócitos, cujo tamanho médio foi estatisticamente menor que o controle.  A 

geração F2, por sua vez, apresentou aumento no tamanho médio de pequenos 

adipócitos e aumento no número de grandes adipócitos, indicando claramente a 

tendência desses em acumular gordura subcutânea. 

Em relação à positividade ao GFAP por astrócitos hipotalâmicos, observou-se 

aumento nos descendentes de mães privadas, em ambas as gerações. 

Os dados obtidos nesse trabalho evidenciam a adaptação estrutural fenotípica 

entre gerações em resposta à privação alimentar materna durante a gestação, 

incluindo a capacidade de armazenamento lipídico e a neuroinflamação. 
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4. CONSIDERAÇÕES FINAIS 
 

A alimentação hipercalórica da geração F0 modificou os níveis plasmáticos de 

TNF-α, ocorrendo mudanças de comportamento após a exposição LPS e alterações 

na reatividade de astrócitos na geração F1. Especulamos que o efeito 

transgeracional de obesidade ocorreu, pelo menos em parte, por mudanças 

persistentes na programação do sistema imunológico. 

A privação de alimentos das mães durante a gravidez na geração F0 induziu, 

em duas gerações (F1 e F2), o fenótipo transgeracional à tendência de sobrepeso e 

obesidade. Esse padrão hereditário também foi observado no SNC, refletido por 

astrogliose no hipotálamo periventricular, em ambas as gerações, e os efeitos 

parecem aumentar ao longo de gerações.  
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6. ANEXOS 
 

6.1 Transgenerational effects of a hypercaloric diet 

A. O. JoaquimA, C. P. CoelhoC, P. Dias MottaA, E. F. BondanA, E. TeodorovD, M. F. 

M. MartinsA, T. B. KirstenA, R. C. V. CasarinB, L. V. BonaminA and M. M. 
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DMathematics, Computing and Cognition Center, Federal University of ABC, Av. dos 
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The effects of a maternal hypercaloric diet (HD) during puberty and early adulthood 
on neuroimmune aspects in offspring were investigated. In female rats of the F0 
generation and male rats of the F1 generation, bodyweight (BW) gain, retroperitoneal 
fat (RPF) weight, the number of hypodermic adipocytes (HAs) and expression of glial 
fibrillary acidic protein (GFAP) were measured in hypothalamic astrocytes. On 
Postnatal Day 50, the F1 pups were challenged with lipopolysaccharide (LPS , 100 
µg/kg, sc) or an equal volume of saline (S), and behaviour in the open field test was 
evaluated, as were plasma neuropeptide and cytokine concentrations. The maternal 
HD caused the female F0 rats to become overweight. The F1 offspring of dams fed 
the HD and injected with saline (HDS group) exhibited increases in BW gain, RPF 
weight and in the number of large HAs and a decrease in GFAP immunoreactivity. F1 
offspring of dams fed the HD and injected with LPS (HDLPS group) exhibited 
decreases in BW gain, RPF weight and GFAP immunoreactivity, but no differences 
were observed in the number of larger and small HAs. Plasma tumour necrosis 
factor-α concentrations were high in the HDS and HDLPS groups. Thus, the maternal 
HD during puberty and early adulthood caused the F1 generation to become 
overweight despite the fact that they received a normocaloric diet. These results 
indicate a transgenerational effect of the HD that may occur, in part, through 
permanent changes in immune system programming. The attenuation of 
neuroinflammation biomarkers after LPS administration may have resulted in a 
decrease in the number of adipocytes, which, in turn, reduced cytokine, adipokine 
and chemokine levels, which are able to recruit inflammatory cells in adipose tissue. 

Additional keywords: adipocytes, astrocytes, behaviour, immune system, 

intergenerational relationship, maternal nutrition. 
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A. O. Joaquim et al. 

Neuroimmunomodulation and overweight in offspring. 

The maternal diet can alter the bodyweight and immune programming of subsequent 

generations. A maternal hypercaloric diet (HD) during puberty and early adult age 

induces overweight in the F1 generation and increases peripheral inflammation 

despite the feeding of a normocaloric diet to the F1 generation. It also induces 

adaptative patterns of the hypothalamic glial response towards a state of 

neuroprotection. These data reveal a transgenerational effect of the HD that may 

occur, in part, through permanent changes in immune and nervous system 

programming. 

 

Introduction 

The incidence of obesity and overweight has increased substantially in recent 

decades, and obesity is now a major global health problem (Haidar and Cosman 

2011; Berenson 2012; Kitzinger and Karle 2013). The considerable health burden of 

obesity and overweight has negative effects on many health outcomes, leading to 

disability, mortality and increased healthcare use (Formiguera and Cantón 2004; 

Rodríguez-Hernández et al. 2013). Individuals who are overweight and obese have 

an increased risk of several diseases, including Type 2 diabetes, respiratory 

disorders, cardiovascular disease, endocrine disorders, immune dysfunction, certain 

types of cancer, psychiatric disorders and decreased fertility (Formiguera and Cantón 

2004; Haslam and James 2005; Aballay et al. 2013; Alemán et al. 2014). 

Chronic obesity is generally associated with a permanent inflammatory process 

(Buckman et al. 2013). Increased adiposity is related to systemic low-grade 

inflammation during pubertal growth and is important for detecting early signs of 

obesity-related metabolic disorders (Wen et al. 2014). Hypodermic adipocytes (HAs) 

produce several adipokines that act both positively and negatively in systemic 

inflammatory processes (Makki et al. 2013; Rodríguez-Hernández et al. 2013). 

Obesity is characterised by chronic low-grade inflammation in several tissues, 

including the hypothalamus (Andel et al. 2009;García-Cáceres et al. 2013; Calvo-

Ochoa et al. 2014). Hypothalamic inflammation is an early factor in the onset of 

obesity, which occurs even before bodyweight (BW) gain (García-Cáceres et al. 
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2013; Guyenet et al. 2013). In the hypothalamus, microglia and astrocytes produce 

cytokines that drive inflammatory responses (García-Cáceres et al. 2013). Because 

of their physical proximity to blood vessels and role in transporting nutrients, 

astrocytes are directly affected by excess nutrients (García-Cáceres et al. 2013). 

Astrocytes may play a unique role in promoting hypothalamic inflammatory 

responses in obesity (García-Cáceres et al. 2013; Rodríguez-Hernández et al. 2013; 

Guyenet et al. 2013; Calvo-Ochoa et al. 2014). 

A wide range of nutritional factors during pregnancy and lactation, including 

undernutrition and maternal obesity, can lead to a range of metabolic disorders in 

offspring (Li et al. 2011; Vickers 2014). Experimental and human evidence suggests 

that developmental programming should be regarded as a transgenerational 

phenomenon and it is therefore often viewed as a form of epigenetic inheritance via 

either maternal or paternal lineage (Taylor and Poston 2007; Ross and Desai 2013; 

Vickers 2014). 

However, little is known about the long-term effects of a maternal hypercaloric diet 

(HD) during puberty and early adulthood on behavioural, endocrine and immune 

aspects in offspring. Thus, in the present study we examined the effects of a 

maternal HD in puberty and early adulthood on the behaviour, BW gain, 

retroperitoneal fat (RPF) weight, the number of HAs and glial fibrillary acidic protein 

(GFAP) immunoreactivity in astrocytes in the hypothalamus of the F1 generation. 

Knowledge about the interrelationship between adiposity and systemic low-grade 

inflammation during pubertal growth is important for detecting early signs of obesity-

related metabolic disorders (Wen et al. 2014). Thus, F1 generation rats were 

challenged with lipopolysaccharide (LPS) at 50 days of age to investigate responses 

to immune activation. 

Materials and methods 

Ethics statement 

The animal procedures in this study were performed in accordance with the 

guidelines of the Committee on Care and Use of Laboratory Animal Resources and 

those of the Brazilian Institutional Ethics Committee, Universidade Paulista (Protocol 

no. 130/12, CEUA/ICS/UNIP, 28/11/2012). The experiments were performed in 

accordance with good laboratory practice protocols and quality assurance methods. 

All efforts were made to minimise the suffering of the animals. 
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Animals 

Twenty female Wistar rats, 23 days of age (F0 generation), from the School of 

Veterinary Medicine (University of São Paulo, SP, Brazil) were used. Rats were 

housed four per cage in microisolator cages under controlled temperature (22–26°C) 

and humidity (50–65%) conditions in artificially lit rooms on a 12-h light–dark cycle 

(lights on at 0700 hours) with free access to sterilised water and irradiated food. 

Sterilised, residue-free wood shavings were used for animal bedding. 

Hypercaloric diet 

Rats in the HD group (F0 generation) were given free access to the HD (Ensure; 

Abbot Brasil, São Paulo, Brazil; total of 1 kcal mL–1 in addition to laboratory chow 

(Nuvilab; Sogorb Ind. and Com., São Paulo, Brazil); values per 100 g solid food item: 

4.2 kcal g–1, 56% carbohydrate, 19% protein, 4.5% cellulose, 5% vitamins and 3.5% 

g total fat). Ensure is a highly palatable liquid diet supplement and each 231 kcal 

bottle contained 1.7 g polyunsaturated fat, 3.59 g monounsaturated fat and 2.2 g 

saturated fat. It did not contain any trans-fat. It was presented in a graduated cylinder 

with a stopper, with 600 mL per bottle. Rats in the HD and normocaloric diet (ND) 

groups were housed four per cage and Ensure and laboratory chow were made 

available to each cage as a whole. The consumption of both diets was measured 

daily. Both diets were changed daily. 

Experimental design 

Female pups of the F0 generation were weighed at weaning (Postnatal Day (PND) 

21) and randomly divided into two groups. One group received the HD from PND23 

to PND65 (HD group; n = 10). The other group received normocaloric laboratory 

chow over the same period (ND group; n = 10). In the HD group, the HD was 

changed to normocaloric laboratory chow after PND65. BW gain in these female rats 

was recorded from PND23 to PND65. On PND90–95, female rats in both groups 

were mated with sexually experienced male rats to obtain the F1 generation. At 

weaning, the F0 females were killed and RPF was weighed. Portions of the 

hypodermis and brain were collected to count the number of small and larger HAs 

(see below) and for immunohistochemical analyses, respectively. 

The litters (F1 generation) from both ND and HD dams (F0 generation) were weighed 

on PND2 and the pups from each treatment were distributed to respective ND and 

HD dams (four male pups and four female pups per dam). The individual BW of one 

male pup per litter was also recorded at weaning on PND21. At this age, general 
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activity in the open field was assessed in one pup per litter. On PND50, male pups 

from the ND and HD dams were divided into two groups and injected with either 100 

µg kg–1, i.p., LPS as described previously (Kirsten et al. 2012; n = 6 per group; 

NDLPS and HDLPS, respectively) and two groups injected with 0.9% saline (1 mL 

kg–1, i.p.; n = 6 per group; NDS and HDS). Fourteen hours after LPS or saline 

injections, the F1 rats were observed in an open field test to evaluate sickness 

behaviour (Dantzer et al. 1998). The time of observation was based on previous 

observations that reported a febrile response 10–24 h after administration of 100 µg 

kg–1 LPS (Nascimento et al., 2013). This LPS challenge was administered to 

evaluate possible adaptive changes in the offspring that were caused by the maternal 

HD in puberty and early adulthood, which is associated with chronic mild 

inflammation (García-Cáceres et al. 2013). When a developing organism suffers 

maternal immune activation, such as from prenatal LPS exposure, the adult offspring 

may react differently after an immune challenge (Bernardi et al. 2010; Penteado et al. 

2014). After behavioural evaluation, the offspring were weighed and killed by 

decapitation. RPF, a portion of the hypodermis, the brain and blood were collected 

from each rat. The RPF was weighed and the RPF/BW index calculated (RPF 

weight/BW × 100). The number of small and larger HAs was determined. Abdominal 

fat weight and the number of HAs were examined in the F1 generation to determine 

whether a maternal HD affects the tendency of pups to develop obesity. The the 

brain was fixed by buffered 10% formalin. This the conventional method and the most 

used for GFAP IHC. Hypothalamic GFAP-positive astrocytes area were evaluated 

after the LPS challenge to determine possible neuroinflammatory mechanisms. Blood 

was collected to determine plasma concentrations of cytokines and neuropeptides. 

Female pups of the F1 generation were used a different altogether, to be published in 

another paper. The experimental design is shown in  Fig. 1. 

Bodyweight 

BW was evaluated in the F0 generation during HD feeding and in adulthood. In the 

F1 generation, total litter weight, litter weight at birth divided by the number of pups 

and the individual weight of one pup per litter at weaning and on PND50 were 

measured. 
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Histopathology and immunohistochemistry 

Rats of the F0 generation were killed by decapitation on PND90–95. The F1 

generation was killed by decapitation 12 h after completion of the behavioural 

observations. All rats underwent necropsy. Retroperitoneal adipose tissue was 

harvested and weighed. Abdominal skin, including the hypodermis and abdominal 

muscle near the umbilical scar, was removed. A 2 × 2 cm fragment was fixed on a 

thin piece of paper and immersed in 10% buffered formalin for fixation. The skin was 

stained with haematoxylin–eosin and 10 serial photomicrographs were taken from 

randomly chosen microscopic fields of the hypodermis using a Nikon (Kanagawa, 

Japan) E200 microscope (10 objective) equipped with a Digital Coolpix Camera 

(Kanagawa, Japan) linked to a liquid  crystal display monitor. The area of each entire 

adipocyte present in each field was measured in pixels using ImageJ software 

(National Institutes of Health, Bethesda, MD, USA). In the first analysis of the area of 

adipose cells, two clearly distinct populations were identified: (1) small cells, with an 

area measuring 9000 pixels; and (2) larger cells, with an area measuring >9000 

pixels. The frequency of small and larger cells per field was determined and the 

significance of differences analysed using the χ2 test. Two-sided P  0.05 was 

considered significant. 

The brain was also collected and fixed in 10% buffered formalin for at least 48 h. A 

single coronal section was then obtained from each brain, including the parietal 

cortex, limbic structures and the hypothalamus (see Fig. S1 a available as 

Supplementary Material to this paper). The samples were processed according to 

conventional histological procedures. Brain sections were mounted on silane-treated 

slides and subjected to GFAP immunohistochemical procedures using the avidin–

biotin peroxidase complex (ABC) method. The immunohistochemical protocol was 

initiated by deparaffinization the histological sections in xylene, followed by 

rehydration in a crescent graded series of ethanol solutions (50%,70% and absolute). 

Antigen retrieval was performed by transferring the slides to 10 mM sodium citrate 

buffer (pH 6.0) at 95°C for 20 min. Endogenous peroxidase was blocked with 3% 

hydrogen peroxide for 10 min at room temperature. Between incubations, sections 

were washed twice with Tris-HCl buffer (pH 6.0; 10 wash buffer; S3006; Dako, 

Glostrup, Denmark). Sections were incubated for 16 h at 4C with the primary 

antibody, polyclonal rabbit anti-GFAP immunoglobulin (1:1000; Z0334; Dako), 

followed by application of horseradish peroxidase-conjugated biotinylated secondary 
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antibody (Dako Universal LSAB 2 System; K0690) according to the manufacturer’s 

instructions. Immunoreactivity was visualised by incubating the sections in a solution 

that contained 0.1% diaminobenzidine (DAB; K3467; Dako). Sections were then 

counterstained with Harris’ modified haematoxylin solution, dehydrated and mounted 

in Entellan (Merck, Darmstadt, Germany). 

Six photomicrographs were taken of each individual hypothalamic periventricular 

area section using a 40 objective, three from the right side and three from the left 

side of the third ventricle, covering approximately 60% of the total counting area (Fig. 

S1b). The area of astrocytes and their processes, marked in brown, was calculated 

automatically, in pixels, using Metamorph software Molecular Devices (Sunnyvale, 

CA, USA), which was calibrated with digital colour filters that regulated red, green 

and blue bits such that only positive cells were included and background staining was 

excluded from the measurement. This area reflected the size and positivity of 

astrocytes to GFAP. Thus, reactive hypertrophic astrocytes were quantified. 

Open field behaviour 

Behaviour was evaluated in the F1 generation at two time points, namely at weaning 

(PND21; 3 min observation) and PND50 (14 h after LPS or saline administration; 5 

min observation). The open field apparatus for the PND21 rat pups was described 

previously by Faggin and Palermo-Neto (1985), whereas the apparatus for PND50 

rats was described by Bernardi and Palermo-Neto (1984). Testing was performed in 

a small room with dim lighting. Each rat was placed individually in the centre of the 

apparatus and total locomotion, peripheral locomotion and immobility time (in 

seconds) recorded. The locomotor frequency and immobility were recorded to verify 

any interference with motor and exploratory behaviour (Bernardi et al. 1981). 

Peripheral locomotion is considered an index of anxiety (Campos et al. 2013). The 

apparatus was washed with a 5% alcohol–water solution before placement of the 

animals to obviate possible bias caused by odour cues left by previous rats. 

Biochemical analysis 

Blood was collected to determine plasma concentrations of cytokines and 

neuropeptides. Serum concentrations of peptides involved in obesity, including leptin 

(Friedman and Halaas 1998; Ahima and Osei 2004), insulin (Baskin et al. 1999), 

oxytocin (Blevins and Ho 2013), β-endorphin (Giugliano and Lefebvre 1991; Wilding 

2002), neurotensin (Arora and Anubhuti 2006) and substance P (Miegueu et al. 

2013), were measured. Chronic obesity is considered a chronic inflammatory 
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process, so plasma concentrations of tumour necrosis factor (TNF)-α, interleukin (IL)-

6 (Singhal et al. 2014) and monocyte chemotactic protein (MCP)-1/CCL2 (a key 

factor in proinflammatory effects; Christiansen et al. 2005) were also evaluated. 

Plasma concentrations of brain-derived neurotrophic factor (BDNF) were measured 

because this neurotrophin may regulate food intake and be involved in the risk of 

developing obesity, diabetes and cardiovascular disease and neuroplasticity 

(Nagahara and Tuszynski 2011). 

Trunk blood was collected from rats of the F1 generation on PND50 in conical tubes 

containing EDTA. Samples were centrifuged and plasma was obtained (centrifuged 

during 15 min. 1,000-2,000 g in a refrigerated centrifuge at a 40C). Plasma BDNF 

levels were determined in duplicate using a commercially available ELISA kit 

(Catalogue no. G7610; Promega, Madison, WI, USA) according to the 

manufacturer’s instructions. Free mature BDNF (i.e. non-acidified samples) was 

evaluated. Mature BDNF is the active form of this neurotrophin that binds to the TrkB 

receptor , , a receptor of  tyrosine kinase family that regulates synaptic strength and 

plasticity of the mammalian nervous system (Je et al. 2012). Plasma concentrations 

of IL-6, insulin, leptin, MCP-1, TNF-α (MILLIPLEX MAP Rat Metabolic Hormone 

Magnetic Bead Panel-Metabolism Multiplex Assay, Catalogue no. RMHMAG-84K , 

Millipore, Billerica, MA, USA); β-endorphin, neurotensin, oxytocin and substance P 

(rat/mouse neuropeptide; Catalogue no. RMNPMAG-83K; MILLIPLEX MAP Rat 

Metabolic Hormone Magnetic Bead Panel-Metabolism Multiplex Assay, Millipore, 

Billerica, MA, USA) were determined using the LUMINEX/Magpix system 

(RSH69K03; Millipore, Billerica, MA, USA). The range of detection of the peptides 

was 1.6–400000 pg mL–1. Samples were analysed in duplicate and the 

concentrations were estimated using a five-parameter polynomial curve (Xponent 

software; Millipore). All results are expressed in pg mL–1. 

Statistical analyses 

Homoscedasticity was verified using an F-test or Bartlett’s test. Normality was 

verified using the Kolmogorov–Smirnov test. Student’s t-test (unpaired, two-tailed) 

and the Mann–Whitney test were used to compare parametric and non-parametric 

data, respectively, between groups. One-way analysis of variance (ANOVA) was 

used to analyse morphometric data. Two-way ANOVA followed by Bonferroni’s test 

was used to analyse data with two factors. Percentage data were analysed using the 
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χ2 test. Unless indicated otherwise, results are expressed as the mean ± s.e.m. or as 

a percentage. In all cases, results were considered significant at P < 0.05. 

Results 

F0 generation studies 

Mean Ensure consumption over 20 days in cages of HD rats was 600 mL day–1, with 

chow consumption in the same cages over the same period being 44.11 ± 9.56 g 

day–1. Mean chow consumption in cages of ND rats was 126.30 ± 10.10 g day–1. 

Thus, a total of 800 kcal was consumed per day per cage in the HD group, compared 

with a total of 530 kcal per day per cage in the ND group. 

Characteristics of the F0 generation fed the HD during puberty and early adulthood 

are given in Table 1. F0 females in the HD group exhibited an increase in BW gain at 

the end of the period of HD consumption (PND65) compared with the control ND 

group. However, in adulthood (PND90–95), these females exhibited a decrease in 

BW compared with the ND group. The weight of RPF and RPF/BW index was greater 

in the HD compared with ND group. The morphometry of adipose tissue in F0 rats 

relative to small HA was not significantly different between the ND and HD groups. 

However, as expected, the number of larger HAs increased in the HD compared with 

ND group. Morphometric analysis of astrocytes in the periventricular hypothalamus 

revealed an increase in the area of GFAP-positive astrocyte processes per 

microscopic field in the HD compared with ND group, indicating astrogliosis. 

Photomicrographs of the periventricular area of the hypothalamus from rats of the F0 

generation are shown in Fig. 2. 

F1 generation studies 

In the F1 generation, litter weight at birth and litter weight/number of pups increased 

significantly in the HD compared with ND group (Table 2). Individual BW in both 

groups did not differ at weaning (Table 2). General activity in the open field test at 

weaning in pups born from HD and ND F0 dams was not altered by maternal 

treatment (Supplementary Fig. 2) 

The BW of the F1 generation from ND and HD dams on PND50 (Fig. 3a) was 

modified by the maternal diet (F1,20 = 35.54, P < 0.0001) but not by LPS treatment 

(F1,20 = 0.06, P = 0.809), and an interaction was found between these two factors 

(F1,20 = 12.20, P < 0.0005). The Bonferroni test indicated a decrease in BW in the 

HDLPS compared with NDLPS group (P < 0.001). RPF weight was not affected by 
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either the maternal diet (F1,20 = 0.592) or LPS administration (F1,20 = 0.30, P = 

0.592; Fig. 3b). However, a significant interaction was found between these two 

factors (F1,20 = 17.17, P = 0.0005). The Bonferroni test revealed an increase in RPF 

weight in the HDS compared with NDS group and a decrease in RPF in the HDLPS 

compared with HDS group. The RPF/BW index was not affected by the maternal diet 

(F1,20 = 3.2, P = 0.089) or LPS treatment (F1,20 = 0.08, P = 0.78), but a significant 

interaction was found between these two factors (F1,20 = 7.86, P = 0.01; Fig. 3c). 

The Bonferroni test revealed an increase in the RPF/BW index in the HDS compared 

with NDS group. 

One-way ANOVA revealed significant differences between small HAs (F3,36 = 11.15, 

P < 0.0001) and larger HAs (F3,36 = 29.31, P < 0.0001) in all groups. The number of 

small HAs was reduced in the HDS compared with NDS group (P < 0.0001; Fig. 3d), 

whereas the number of larger HAs increased in the HDS compared with NDS group 

(P < 0.0001; Fig. 3e). No differences were found in the number of small and larger 

HAs between the NDLPS and HDLPS groups. 

An inverse relationship was observed in the area of GFAP-positive astrocytes 

between  both generations. In the F0 generation, GFAP immunoreactivity and the 

area of astrocyte processes were greater in the HD-fed group than the ND group 

(mean (± s.d.) 19077 ± 6524 vs 12872 ± 2695, pixels.respectively; P = 0.001, Mann–

Whitney test). In the F1 generation, there was less pronounced GFAP-

immunoreactivity in astrocytes and shorter astrocyte processes in the HDS compared 

with NDS group (mean (± s.d.) 30865 ± 15396 vs 42436 ± 12909 pixels, respectively; 

P = 0.001, Mann–Whitney test). LPS treatment partially reversed this decrease in the 

GFAP-positive area  and the area of GFAP-positive astrocyte processes appeared to 

be a little greater in the NDLPS and HDLPS groups although the differences did not 

reach statistical significance (mean (± s.d.) 40986 ± 16679 vs 36934 ± 16186 pixels, 

respectively; P = 0.275, Mann–Whitney test). The morphology of these cells is shown 

in Fig. 2. 

Fig.4 shows general activity in the open field test on PND50 of F1 rats born to ND 

and HD dams and treated with either LPS or saline. Locomotion frequency (Fig. 4a) 

was modified by LPS administration (F1,20 = 8.42, P = 0.009) but not by the 

maternal diet (F1,20 = 1.01, P = 0.327), and there was no interaction was between 

these two factors (F1,20 = 0.98, P = 0.334). Locomotion frequency decreased in the 

NDLPS compared with the NDS and HDS groups, indicating typical sickness 
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behaviour. Locomotion frequency was significantly greater in the HDLPS compared 

with NDLPS group (P < 0.01), indicating that sickness behaviour was minimised. No 

differences were observed among the NDS, HDS and HDLPS groups. Peripheral 

locomotion frequency (Fig.4b) was also altered by LPS treatment (F1,20 = 6.25, P = 

0.021), but not by maternal diet (F1,20 = 3.15, P = 0.09), and an interaction was 

found between the two factors (F1,20 = 6.51, P = 0.019). The NDLPS group 

exhibited decreased peripheral locomotion frequency compared with the NDS and 

HDS groups, but the HDLPS group did not (P < 0.05). The HDLPS group exhibited a 

significant increase in peripheral locomotion compared with the NDLPS group, which 

was similar to that in the saline-treated group. Immobility time (Fig.4c) was altered by 

LPS administration (F1,20 = 6.80, P = 0.017), but not by the maternal diet (F1,20 = 

0.80, P = 0.383), and no interaction was found between the two factors (F1,20 = 

0.32, P = 0.578). The HDLPS group exhibited increased immobility compared with 

the NDLPS group. 

Fig. 5 shows plasma TNF-α concentrations in the F1 generation. No interaction was 

detected between the diet and LPS treatment (F1,20 = 0.36, P = 0.55), with no effect 

of LPS treatment (F1,20 = 0.36, P = 0.56). However, the diet affected TNF-α levels 

(F1,20 = 5.64, P = 0.03). Both the HDS and HDLPS groups exhibited increased TNF-

α concentrations compared with the NDS and NDLPS groups, respectively. Neither 

diet nor LPS had any effect on plasma BDNF, leptin, insulin, oxytocin, neurotensin, β-

endorphin, substance P, IL-6 or MCP-1/CCL2 concentrations (Table S2). 

Discussion 

Female rats of the F0 generation in the HD group exhibited significant increases in 

BW gain during early development (from weaning to PND65) compared with controls. 

However, only a 5% increase was observed, indicating that the rats were overweight 

but not obese. The HD provided 800 kcal. When the HD was switched to the ND until 

adulthood, the BW of the HD group decreased faster compared with controls, 

although the RPF weight, RPF/BW index and number of larger HAs remained 

elevated. This reduction in BW in the HD group could be attributable to a change in 

body mass or fat distribution. RPF is a very lightweight fat and the increase in RPF 

was not mirrored by significant changes in BW. The most important outcome of the 

consumption of the HD during puberty was the increase in both abdominal fat and 

the number of larger HAs in females in adulthood. 
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Robust data indicate that prevalent forms of metabolic syndrome are found among 

individuals with excess abdominal fat (Després and Lemieux 2006; Després et al. 

2008). Metabolic syndrome has been defined as a constellation of atherothrombotic 

inflammatory abnormalities, of which insulin resistance is a central component and 

most often found among individuals with excess abdominal fat (Huang 2009). Studies 

using sophisticated metabolic markers have shown that such a cluster of metabolic 

abnormalities is predictive of an increased risk of Type 2 diabetes and cardiovascular 

disease (Ridker et al. 2003; Wilson et al. 2005; Schmidt and Bergström 2012). Thus, 

although the HD did not induce obesity in the present study, the long-term increases 

in the RTF/BW index and the number of large HAs suggest the accumulation of fat in 

HD-treated rats that may be predictive of metabolic syndrome. 

The ability of an HD to cause individuals to become obese and overweight is 

associated with hypothalamic gliosis and inflammation (Lee et al. 2001; García-

Cáceres et al. 2013; Calvo-Ochoa et al. 2014). Hypothalamic inflammation occurs in 

specific hypothalamic nuclei (Buckman et al. 2013) before systemic inflammatory 

markers are detected (Thaler et al. 2012; Chowen et al. 2013). This high-fat diet-

induced gliosis  indicates that the astrocyte-mediated transport of nutrients and other 

factors is most likely affected (Chowen et al. 2013). The increases in RPF weight, the 

RPF/BW index and the number of larger HAs and hypothalamic astrogliosis in the 

present study suggest that HD intake during the course of pubertal maturation can 

modify neuroendocrine circuits in adulthood, mainly those involved in the control of 

metabolism, such as leptin and cytokines, and hypothalamic regulation (Chowen et 

al. 2013; García-Cáceres et al. 2013). Visceral fat is a functional endocrine organ 

with important effects on numerous metabolic and hormonal responses. Visceral 

adipose tissue is known to produce inflammatory adipokines, regulatory adiponectin 

and other regulatory molecules, such as leptin, cocaine- and amphetamine-regulated 

transcript and nuclear factor-κB, which play important causal roles in these chronic 

diseases (McGown et al., 2014). Thus, the results of the present study are consistent 

with the persistent hypothalamic inflammatory process that is caused by HD feeding 

during puberty and early adulthood. 

At birth, the F1 litters from F0 dams in the HD group had a greater BW than litters 

from F0 dams in the ND group. The litter weight/number of pups was greater in the 

HD compared with ND group. However, no differences in pups BW were observed at 

weaning between groups. 
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Maternal obesity and being overweight negatively affect fetal offspring and their 

postnatal phenotype, including brain development, exploratory, emotional and 

cognitive behaviours and metabolic dysfunction. RPF is a visceral fat depot that is 

associated with metabolic dysfunction (Chau et al. 2014). These metabolic changes 

caused by the maternal HD may be responsible for the increase in litter weight of the 

F1 generation at birth. 

In the present study, no differences were found in general activity among F1 groups 

at weaning, suggesting that the maternal HD during puberty and early adulthood did 

not affect exploratory or motor activity in the pups at this age. In adulthood, no 

differences in general activity or BW were found between the NDS and HDS groups. 

In the HDS group, increases were observed in RPF weight, the number of larger HAs 

and plasma TNF-α concentrations, which were associated with a decrease in the 

area of GFAP-positive astrocytes in the hypothalamus. Thus, the maternal HD during 

puberty and early adulthood predisposes their offspring to developing obesity 

associated with hypothalamic and peripheral inflammatory processes in adulthood, 

even if they are fed on an ND. 

The intake of an HD increases inflammation within the periphery and hypothalamus, 

which may be the key to metabolic changes that occur in obesity (Becskei et al. 

2008; Velloso et al. 2008; García-Cáceres et al. 2013). Astrocytes respond to 

changes in the central nervous system (CNS) by undergoing morphological and 

functional alterations that are anatomically specific and affect neuronal activity 

(García-Cáceres et al. 2013). When the CNS undergoes a particular insult, 

astrocytes can become hypertrophic or assume a reactive phenotype, termed 

astrogliosis. Astrogliosis is characterised by the upregulation of specific structural 

proteins, such as GFAP and vimentin (Ridet et al. 1995). Astrocytes then produce 

inflammatory mediators, including TNF-α, IL-1β and IL-6 (Mayo et al. 2014). These 

inflammatory factors can affect microglia, neurons and astrocytes themselves to 

control CNS inflammatory processes and immune reactions (Singhal et al. 2014). In a 

review, García-Cáceres et al. (2013) commented that a prolonged HD induces 

hypothalamic inflammation and leads to gliosis associated with neuronal apoptosis in 

the hypothalamus. 

There was no significant difference in BW between rats in the HDS and control 

groups, although HDS rats did exhibit increases in RPF weight and the number of 

larger HAs and a decrease in small HAs. The increase in RPF in rat offspring from 
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HD-fed dams and the switch from small HAs to larger HAs could indicate an increase 

in the inflammatory process in these animals. Importantly, the F1 generation only 

received an ND. Therefore, the maternal HD appeared to reprogram offspring 

adipogenesis towards obesity. 

An increase in HAs, which is observed in individuals who are obese or overweight, 

produces and releases large amounts of cytokines, adipokines and chemokines that 

are able to recruit inflammatory cells to adipose tissue. Macrophages that infiltrate 

adipose tissue amplify the inflammatory response in concert with HAs (Makki et al. 

2013). Thus, we suggest that the neuroinflammation observed herein resulted from 

an increase in adiposity in the HDS group. 

LPS also affects CNS activity, leading to sickness behaviour in many species 

(Dantzer et al. 1998; Costa-Pinto et al. 2009), generally accompanied by a decrease 

in exploratory activity, a decrease in social and sexual behaviour, anhedonia, poor 

learning and a decrease in cognitive function (Bernardi et al. 2010; Kirsten et al. 

2010, 2012; Pimentel et al. 2013; Soto et al. 2013; Penteado et al. 2014). As 

expected, LPS administration induced sickness behaviour in the NDLPS group, in 

which both total and peripheral locomotion decreased compared with the NDS group. 

The increase in sickness behaviour that was observed in the NDLPS group could be 

a consequence of neuroinflammation that was induced by the higher number of 

larger adipocytes. In addition, high plasma concentrations of TNF-α were observed. 

BW and RPF weight in rats in the HDLPS group decreased faster compared with 

offspring that were not challenged with LPS. There was an equal number of small 

and larger HAs in the HDLPS group, in contrast with the predominance of larger HAs 

in rats that were not challenged with LPS. Central control of food and water 

consumption depends on the activity of hypothalamic areas. Consistent with our 

data, Riediger et al. (2010) showed that LPS markedly suppressed food and water 

consumption, beginning approximately 2 h after injection and lasting over the entire 

23-h period of observation. Riediger et al. (2010) also reported an association 

between nitric oxide and LPS-induced symptoms, such as disease-related anorexia 

and other disease-related symptoms (e.g. adipsia, inactivity and fever). Thus, the 

decrease in BW and lack of differences in the distribution of small and larger HAs in 

the HDLPS group could be consequences of LPS-induced sickness, although 

general activity in the open field test was lower in the HDLPS than NDLPS group. 

This observation is consistent with the cachectin-like effect that is seen in sepsis, 
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which is caused by increases in peripheral plasma TNF-α concentrations. The lack of 

differences in the distribution of small and larger HAs in the HDLPS group could be 

related to the attenuation of hypothalamic inflammation. 

General activity increased in the HDLPS compared with NDLPS group, suggesting 

an attenuation of sickness behaviour, but the HDLPS group also exhibited increases 

in locomotion in the peripheral area and immobility time. Thus, we suggest that these 

rats had high levels of ‘anxiety’ that masked LPS-induced sickness behaviour. In 

short, the offspring of dams that were overweight in puberty and early adulthood 

exhibited changes in behavioural patterns that were induced by immune activation in 

early adulthood. These data suggest that a transgenerational adaptive process 

occurred. 

Relative to hypothalamic astrocytes, an inverse relationship between generations 

was observed in the area of GFAP-positive astrocytes in both generations. The HD 

group of the F0 generation exhibited an increased area of GFAP-positive astrocytes, 

whereas a decrease was observed in the HDS group of the F1 generation compared 

with their respective control group, despite the fact that peripheral plasma TNF-α 

concentrations increased. These data reinforce the relationships between 

hypothalamic neuroinflammation and the number of larger adipocytes. 

These features are very well known effects of obesity, but little is known about the 

effects of these changes on subsequent generations. Our results showed that 

although the dams that were fed an HD during puberty and early adulthood had more 

reactive astrocytes, their F1 offspring exhibited the opposite effects, with small and 

hyporeactive astrocytes compared with control rats, suggesting an adaptive rebound 

process in response to the dam’s dietary pattern (Rao et al. 2012). However, this 

‘memory’ was deleted after LPS injection. 

Metabolic disorders and adverse environmental effects may be perpetuated in the F2 

and F3 generations via both the maternal and paternal lineages (Youngson and 

Morris 2013; Vickers 2014). In the present study, maternal HD exposure during early 

life predisposed the F1 generation (i.e. the HD group) to an increase in RPF weight, 

despite being fed an ND. In addition, a higher number of larger versus small HAs and 

astrogliosis were observed. LPS administration changed these RPF and hypodermic 

fat weights and astrocyte area patterns. At the biochemical level, these adaptations 

did not occur with regard to peripheral plasma TNF-α concentrations. 
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Although interesting data were obtained herein, the diet that was administered only 

caused marginal increases in BW. Further studies are required that use a better 

model of diet-induced obesity to examine possible transgenerational effects. 

Conclusions 

The HD that was administered during puberty and early adulthood caused the rats to 

become overweight, reflected by increases in BW, RPF, the RPF/BW index and the 

number of large HAs. This state of being overweight persisted in the F1 generation, 

although the offspring were fed only an ND. Thus, we found a transgenerational 

effect of the HD. Based on the increase in plasma TNF-α concentrations and 

changes in biomarkers of neuroinflammation, we speculate that this 

transgenerational effect of the HD occurred, at least in part, through permanent 

changes in immune system programming. The attenuation of biomarkers of 

neuroinflammation after LPS administration likely resulted from the decrease in the 

number of adipocytes, which, in turn, reduced the amount of cytokines, adipokines 

and chemokines that were able to recruit inflammatory cells in adipose tissue. 
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Fig. 1. Experimental design. BDNF, brain-derived neurotrophic factor; RPF, 

retroperitoneal fat.ND- normocaloric diet group; HD- hypercaloric diet group.  

Fig.4. General activity in the open field test on Postnatal Day 50 of rats from dams 

fed the normal (ND) or hypercaloric (HD) diet following injection of 100 µg kg–1, i.p., 

lipopolysaccharide (LPS) or 1 mL kg–1, i.p., of 0.9% saline solution (S). (a) 

Locomotion frequency, (b) peripheral locomotion frequency and (c) immobility time. 

Data are them mean ± s.e.m. (n = 6 per group). *P < 0.001 compared with the NDS 

group; †P = 0.05 compared with the HDS group; ‡P = 0.05 compared with the 

HDLPS group (two-way ANOVA followed by Bonferroni’s test). 

Fig. 3. (a) Bodyweight in adulthood, (b) retroperitoneal fat (RPF) weight, (c) RPF 

weight/bodyweight (BW) index ( 100), (d) number of small hypodermic adipocytes 

(HAs) and (e) number of larger HAs in rats from dams fed the normal (ND) or 

hypercaloric (HD) diet following injection of 100 µg kg–1, i.p., lipopolysaccharide 

(LPS) or 1 mL kg–1, i.p., of 0.9% saline solution (S). Data are them mean ± s.e.m. (n 

= 6 per group). *P < 0.05, ***P < 0.0001 compared with the NDS group (two-way 

ANOVA followed by Bonferroni’s test). 

Fig. 2. Photomicrographs of the periventricular area of the hypothalamus from rats 

in the F0 and F1 generations, showing glial fibrillary acidic protein (GFAP)-positive 

astrocytes with different degrees of positivity, represented by the brown (DAB 

stained) area, that is smaller in F1 generation born from HD fed mothers.ND, normal 

diet; HD, hypercaloric diet; NDS, saline-treated pups born to an ND-fed dam; HDS, 

saline-treated pups born to an HD-fed dam; NDLPS, lipopolysaccharide (LPS)-

treated pups born to an ND-fed dam; HDLPS, LPS-treated pups born to an HD-fed 

mother. (Original magnification 40.) 

Fig. 5. Tumour necrosis factor (TNF)-α concentrations in rats from dams fed the 

normal (ND) or hypercaloric (HD) diet following injection of 100 µg kg–1, i.p., 

lipopolysaccharide (LPS) or 1 mL kg–1, i.p., of 0.9% saline solution (S). n = 6/group. 

Data are them mean ± s.e.m. (n = 6 per group). *P < 0.05, compared with the NDS or 

HDS groups, respectively (two-way ANOVA followed by Bonferroni’s test). 
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Table 1. Characteristics of the F0 generation fed either the hypercaloric (HD) or 

normal (ND) diet during puberty 

Data are the mean ± s.e.m. (n = 6 per group). All data were analysed by Student’s t-

test, except for the glial fibrillary acidic protein (GFAP)-positive area, which was 

evaluated using the Mann–Whitney test relative to the control (ND) group. RPF, 

retroperitoneal fat; BW, bodyweight 

 ND group HD group P-value 

Weight gain at the end of 

treatment (g) 

201.0 ± 5.1 213.0 ± 1.6 0.036 

Weight in adulthood (g) 308.3 ± 14.8 262.7 ± 8.2 0.02 

RPF weight (g) 1.45 ± 0.37 8.56 ± 0.56 <0.0001 

RPF/BW index 0.70 ± 0.69 3.80 ± 0.26 0.002 

Area of small adipocytes (pixels) 3067 ± 181 3032 ± 178 0.13 

Area of larger adipocytes (pixels) 10 870 ± 741 17 330 ± 496 <0.0001 

GFAP-positive area (pixels) 12 872 ± 2695 19 077 ± 6524 0.001 

 

 

 

Table 2. Litter weight, litter weight/number of pups, number of pups at birth and 

individual weight of pups at weaning of rats born to dams fed either the hypercaloric 

(HD) or normocaloric (ND) diet 

Data are the mean ± s.e.m. P-values were calculated using Student’s t-test 

 ND group HD group No litters 

per group 

 

P-value 

Litter weight (g) 89.92 ± 4.02 171.60 ± 5.02 10 <0.0001 

Litter weight/pups (g) 8.74 ± 0.38 17.33 ± 0.71 10 <0.0001 

Total no. pups 123 121 – – 

No. pups 10.25 ± 0.49 10.08 ± 0.34 10 0.78 

Mean weight of all pups in 

the ND and HD groups (g) 

67.42 ± 3.22 55.50 ± 5.12 10 0.06 
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Fig. 2 
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Fig. 3
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Fig. 4 
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Fig. 5

 

 



59 

 

Supplementary Fig. 1
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Supplementary Fig. 2 
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Table 3. BNDF, leptin, insulin, oxytocin, neurotensin, β-endorphin, Substance P, IL-6  

and MCP-1/CCL2 plasma levels (pg/ml)  of male rats from dams treated during 

puberty with normocaloric or hypercaloric diet . These male rats received at 50 days 

of age 100µg/kg of LPS or saline solution and the blood was collected 14 h after this 

treatment. CNS- pup of dams fed with normocaloric diet and that received at 50 days 

of age 1 ml/kg of saline solution; HDS- pup of dams fed with hypercaloric diet and 

that received at 50 days of age 1 ml/kg of saline solution;  CNLPS- pup of dams fed 

with normocaloric diet and that received at 50 days of age 100µg/kg of LPS; HDLPS- 

pup of dams fed with hypercaloric diet and that received at 50 days of age 100µg/kg 

of LPS. Data are presented as means  ± SEM. N= 6/group.  

 

Groups CNS HDS CNLPS HDLPS 

BNDF 3579 ± 1181 3662 ± 1395 3715 ± 1033 4402 ± 1594 

Leptin 1857.0 ± 324.5 1664.0 ± 363.3 2883.0 ± 495.1 2181.0 ± 263.2 

Insulin  1887.0 ± 
151.90 

1591.0 ± 156.2 1780.0 ± 120.7 2056.0 ± 
138.80 

Oxytocin  11.56 ± 0.80 13.42 ± 1.11 11.55 ± 0.26 12.84 ± 1.32 

Neurotensin 64.06 ± 2.58 63.30 ± 6.39 50.87 ± 2.52 53.60 ± 4.36 

Β-endorphin 95.6 ± 11.0 92.9 ± 8.0 108.9 ± 7.6 87.2 ± 5.9 

Substance P 1.74 ± 0.12 2.06 ± 0.15 1.60 ± 0.03 1.76  ± 0.15 

IL-6 87.47 ±43.60 200.40 ± 
156.90 

19.77 ± 6.34 159.60± 80.11  

MCP-1/CCL2 347,20 ± 61.14 359.10 ± 96.48 819.50 ± 
229.20 

457.50 ± 
113.70 

The two way ANOVA did not show differences between groups. 
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6.2 Maternal food deprivation in rats increased retroperitoneal fat and the 

number and size of adipocytes and induced periventricular astrogliosis in the 

F1 and F2 generations 
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