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PREFÁCIO 

 

Este volume refere-se à dissertação de mestrado apresentada como requisito para a defesa 

de mestrado perante a Banca Examinadora no Programa de Pós-Graduação em Patologia 

Ambiental e Experimental, Universidade Paulista. 

Segundo as normas do Programa, este trabalho é apresentado na forma de artigo científico 

de autoria do aluno e organizado de acordo com as exigências do veículo de publicação 

científica escolhido. 

O periódico escolhido para a submissão foi o European Journal Pharmacology, sendo o 

título do manuscrito: Hyperactivity of the dopaminergic central system in bapa mutant 

mice: an experimental model of the Kabuki syndrome.  
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1 REVISÃO DE LITERATURA 

 1.1 Introdução  

O sistema nervoso é um complexo conjunto de nervos que integra e coordena 

os processos biológicos que ocorrem concomitantemente no organismo. Também 

atua como canal de comunicação interno do organismo, além de ser o responsável, 

pela percepção, processamento, resposta e transmissão das interações e variações 

do meio externo em relação ao indivíduo (DANGELO; FATTINI, 2004). Ssegundo, 

Grabowski (2008), o sistema nervoso executa três funções básicas: sensorial, 

função integrativa e função motora. Suas estruturas são compostas por: encéfalo, 

nervos cranianos, medula espinhal, nervos espinhais, gânglios, plexos entéricos e 

receptores sensoriais.  

O Sistema Nervoso é subdividido em Sistema Nervoso Central (SNC) e  

Sistema Nervoso Periférico (SNP). No SNC o neurônio é a célula mais importante, 

sendo o SNC constituído também de células não neuronais, como vasos 

sanguíneos, meninges e as células gliais. A comunicação entre os neurônios do 

SNC ocorre inicialmente por geração de impulsos elétricos da membrana do 

neurônio devido a diferenças de cargas negativas predominantes na face interna da 

membrana denominado de impulso nervoso. Este impulso nervoso gera um 

potencial de ação o qual é transmitido por toda fibra nervosa neuronal até chegar na 

terminação sináptica. As sinapses podem ser de dois tipos: elétricas e químicas. As 

sinapses elétricas promovem à transferência direta da corrente iônica de uma célula 

nervosa a outra, enquanto que nas sinapses químicas esta comunicação é feita por 

meio da liberação de neurotransmissores, que, em geral, são sintetizados na fibra 

pré-sináptica. Estes neurotransmissores interagem com receptores que são 

proteínas de membranas excitando-o ou inibindo-o, bem como atuam em receptores 

pré-sinápticos que controlam a atividade do neurônio e a liberação do 

neurotransmissor e do neurônio. No quadro 01 em anexo B tem-se os principais 

neurotransmissores e seus receptores do SNC, localização sináptica dos receptores, 

agonistas e antagonistas destes neurotransmissores, localização predominantes no 

SNC e função (SPINOSA et al., 2011).  
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A dopamina é um neurotransmissor catecolaminérgico muito importante do 

SNC e participa da regulação de diversas funções como a atividade motora, a 

emotividade e a afetividade assim como a comunicação neuroendócrina. Sua 

sintetização se dá a partir do aminoácido tirosina (FELDMAN; MEYER; QUENZER, 

1997). 

Os receptores dopaminérgicos se encontram distribuídos de forma abundante 

em diversas áreas do SNC, e são responsáveis por muitas ações da dopamina. São 

compostos por cinco diferentes tipos, sendo todos acoplados a proteínas G e 

divididos em duas famílias farmacológicas denominadas D1 e D2. Os receptores da 

família D1 (subtipos D1 e D5) estão acoplados às proteínas Gs e estimulam a 

formação de AMPc como principal mecanismo de transdução de sinais. Os subtipos 

pertencentes á família D2 (D2, D3 e D4) inibem a formação de AMPc, ativam canais 

de K+ e reduzem a entrada de íons de Ca++ através de canais dependentes da 

voltagem (TRUJIILO; FLORES; MONTAÑO, 2000). 

A administração de fármacos agonistas e antagonistas de receptores 

dopaminérgicos modulam a liberação de dopamina estriatal e induzem e modificam 

a função motora. A apomorfina é um agonista não específico dos receptores da 

dopamina. Embora o mecanismo preciso da ação da apomorfina seja desconhecido, 

prevê-se que atue através da estimulação dos receptores D1 e D2 pós-sinápticos no 

estriado (núcleo caudado e putâmen). Quando administrada por via subcutânea, 

mostra um rápido início da sua ação (VOLKMANN et al., 2013). 

A Síndrome de Kabuki, é uma desordem genética rara, que se caracteriza por 

anomalias congênitas e por deficiência cognitiva. Descrita pela primeira vez no 

Japão por Nikawa e Koruki em 1981, com etiologia ainda desconhecida. Seus 

portadores apresentam o que é conhecido como Pêntade de Nikawa: dimorfismo 

facial, anomalias esqueléticas, alterações dermatoglíficas, retardo mental de leve a 

moderado e deficiência no crescimento pós-natal (NIKAWA et al, 1988; SCHOEN-

FERREIRA et al., 2010). 

Na literatura existem poucas as informações disponíveis sobre o papel dos 

neurotransmissores dopaminérgicos na mediação das ações biológicas induzidas 

pelos agonistas e antagonistas dopaminérgicos na síndrome de Kabuki. O objetivo 

deste estudo é de efetuar uma abordagem descritiva a respeito 1) do sistema 
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nervoso e do sistema dopaminérgico; 2) verificar a participação do sistema 

dopaminérgicos central na disfunção motora de camundongos mutantes bapa, um 

modelo animal da Síndrome de Kabuki, utilizando agonistas e antagonistas 

dopaminérgicos.. 

 1.2 Sistema Nervoso 

O Sistema Nervoso (SN) é responsável pelo ajuste do organismo ao 

ambiente. Sua função é captar e identificar as condições ambientais externas, bem 

como as condições presentes dentro do próprio corpo e elaborar respostas que se 

adaptem a essas condições (MACHADO, 2006). 

As funções do sistema nervoso incluem: orientação do corpo em relação aos 

ambientes, interno e externo; coordenação e controle das atividades do corpo; 

assimilação de experiências necessárias para a memória, aprendizado e inteligência 

e a programação do comportamento instintivo (GRAFF, 2003). 

Os diferentes sistemas do corpo são integrados ao sistema nervoso, e suas 

funções, dependem da sua capacidade em monitorar mudanças ou estímulos do 

interior e do exterior do corpo; em interpretar as mudanças em um processo 

chamado integração; e em efetuar respostas ativando músculos ou glândulas. Assim 

sendo, o sistema nervoso tem funções sensitivas, de integração e motoras, todas as 

quais trabalham em conjunto para manter a homeostasia do corpo (APPLEGATE, 

2012). 

 1.2.1 Divisão anatômica e funcional do Sistema Nervoso  

O Sistema Nervoso é dividido anatomicamente em:  SNC: formado pelo 

encéfalo e medula espinal e SNP: formado pelos nervos (espinais [31] e craniais 

[12]), gânglios, terminações nervosas (figura 01) (SILVA; SILVA, 2014).  

 O SNC está localizado dentro do esqueleto axial (cavidade craniana e canal 

vertebral); já o SNP é aquele que se localiza fora do esqueleto (MACHADO, 2006). 

 Segundo Neto e Flavigna (2003), funcionalmente o sistema nervoso pode ser 

dividido em duas partes: O sistema nervoso somático e o sistema nervoso visceral. 

O sistema nervoso somático (aferente ou eferente): têm a função de atuar de forma 
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voluntaria, e é responsável em integrar o homem ao meio ambiente. Já o sistema 

nervoso visceral tem a função de atuar involuntariamente, e está relacionado ao 

funcionamento de todos os órgãos. O Sistema Nervoso Visceral é subdividido em 

duas outras partes: Sistema Nervoso Visceral Aferente que é responsável por 

conduzir informações sensoriais de fora do corpo para o SNC e o Sistema Nervoso 

Visceral Eferente (autônomo): atua de modo involuntário e inconsciente, 

controlando e mantendo as funções vitais em ordem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 01. Divisão do Sistema Nervoso (adaptado). 

Fonte: SILVA; SILVA, 2014. 
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 1.2.2 Sistema Nervoso Central  

O SNC divide-se em encéfalo e medula. O encéfalo corresponde ao 

telencéfalo (hemisférios cerebrais), diencéfalo (tálamo, metatálamo, epitálamo, 

hipotálamo e subtálamo), cerebelo, e tronco encefálico, que se divide em: bulbo, 

situado na porção caudal; mesencéfalo, situado cranialmente; e ponte, situada entre 

ambos (figura 02) (HICKMAN; ROBERTS; LARSON, 2009). 

No SNC, existem as chamadas substâncias cinzenta e branca. A substância 

cinzenta é formada pelos corpos dos neurônios e a branca, por seus 

prolongamentos. Com exceção do bulbo e da medula espinal, a substância 

cinzenta ocorre mais externamente e a substância branca, mais 

internamente..Além disto, as células gliais,  promovem a nutrição, defesa e suporte 

ao funcionamento do SNC (VAN DE GRAAFF, 2003). 

Os órgãos do SNC são protegidos por estruturas esqueléticas (caixa 

craniana, protegendo o encéfalo; e coluna vertebral, protegendo 

a medula espinal) e por membranas denominadas meninges, situadas sob a 

proteção esquelética: dura-máter (a externa), aracnóide-máter (a do meio) e pia-

máter (a interna). Entre as meninges aracnóide-máter e pia-máter há um espaço 

preenchido por um líquido denominado líquido cefalorraquidiano ou líquor (BEAR; 

CONNORS; PARADISO, 2002). 
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Figura 02. Sistema Nervoso Central (SNC) (adaptado). 

Fonte: VAN DE GRAAFF, 2003. 

 1.2.3 Sistema Nervoso Periférico (SNP)  

O sistema nervoso periférico é formado por fibras nervosas e corpos celulares 

fora do SNC que conduzem impulsos que chegam ou saem do sistema nervoso 

central. O SNP é organizado em nervos que unem a parte central às estruturas 

periféricas (MOORE; DALLEY; AGUR, 2013). 

É constituído por todos os órgãos nervosos exteriores ao eixo 

cerebrospinal: receptores sensoriais, nervos e gânglios nervosos. São os nervos que 

fazem a ligação entre o sistema nervoso central e todas as outras regiões do 

organismo e partem tanto do encéfalo, como da medula espinal. Do encéfalo partem 

12 pares de nervos – os nervos cranianos – que se dirigem, prioritariamente, para as 

diferentes partes da cabeça, principalmente para os receptores sensoriais dos 

órgãos dos sentidos; da medula saem 31 pares de nervos – os nervos espinais – 

que se ramificam por todo o organismo: órgãos, músculos, pele, etc. Qualquer parte 

de um neurônio que esteja fora do encéfalo ou da medula espinal já faz parte do 

SNP (figura 03) (DRAKE; VOGL; MITCHELL, 2010). 

A divisão funcional do Sistema Nervos Periférico tem ações voluntárias 

resultam da contração de músculos estriados esqueléticos, que estão sob o controle 

do sistema nervoso periférico voluntário ou somático. Já as ações involuntárias 

resultam da contração das musculaturas lisa e cardíaca, controladas pelo sistema 

nervoso periférico autônomo, também chamado involuntário ou visceral (MOORE; 

DALLEY; AGUR, 2013). 

O SNP autônomo (SNPA) é dividido em dois ramos: simpático e 

parassimpático, que se distinguem tanto pela estrutura quanto pela função. 

Enquanto os gânglios da via simpática localizam-se ao lado da medula espinal, 

distantes do órgão efetuador, os gânglios das vias parassimpáticas estão longe do 

sistema nervoso central e próximos, ou mesmo dentro do órgão efetuador 

(MACHADO, 2006). 
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As fibras nervosas simpáticas e parassimpáticas inervam os mesmos órgãos, 

mas trabalham em oposição. Enquanto um dos ramos estimula determinado órgão, 

o outro o inibe. Essa ação antagônica mantém o funcionamento equilibrado dos 

órgãos internos (MACHADO, 2006). 

O SNPA simpático, de modo geral, estimula ações que mobilizam energia, 

permitindo ao organismo responder a situações de estresse. Por exemplo, o SNPA 

simpático é responsável pela aceleração dos batimentos cardíacos, pelo aumento da 

pressão sanguínea, pelo aumento da concentração de açúcar no sangue e pela 

ativação do metabolismo geral do corpo (MOORE; DALLEY; AGUR, 2013). 

Já o SNPA parassimpático estimula principalmente atividades relaxantes, 

como a redução do ritmo cardíaco e da pressão sanguínea, entre outras. Tanto nos 

gânglios do SNPA simpático como nos do parassimpático ocorrem sinapses 

químicas entre os neurônios pré-ganglionares e os pós-ganglionares. Nos dois 

casos, a substância neurotransmissora da sinapse é a acetilcolina. No SNPA 

parassimpático, o neurotransmissor é a acetilcolina, como nas sinapses 

ganglionares. Já no simpático, o neurotransmissor é, com poucas exceções, a 

noradrenalina (MACHADO, 2006). 

Para a percepção da sensibilidade, na extremidade de cada fibra sensitiva há 

um dispositivo captador que é denominado receptor e uma expansão que a coloca 

em relação com o elemento que reage ao impulso motor, este elemento na grande 

maioria dos casos é uma fibra muscular podendo ser também uma célula glandular 

(MOORE; DALLEY; AGUR, 2013). 
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Figura 03. Sistema Nervoso Periférico (SNP) (adaptado). 

Fonte: VAN DE GRAAFF, 2003. 
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 1.2.4 Células e tecidos do Sistema Nervoso 

Apesar da elevada complexidade do sistema nervoso, o tecido nervoso 

apresenta apenas dois tipos principais de células. A verdadeira célula nervosa é o 

neurônio. É a célula condutora que transmite impulsos, e é a unidade estrutural do 

sistema nervoso. O outro tipo celular é a neuróglia ou células da glia. Essas não são 

condutoras e proporcionam o sistema de suporte para os neurônios. Elas consistem 

em um tipo especial de tecido conjuntivo para o sistema nervoso (APPLEGATE, 

2012). 

 Neurônios: Presente em bilhões de quantidade, os neurônios também 

chamados de células nervosas, são unidades estruturais do sistema 

nervoso. São células altamente especializadas que conduzem mensagens 

por impulsos nervosos de uma parte do corpo para outra, além de 

possuírem algumas outras características como: extrema longevidade se 

bem nutridos, funcionam perfeitamente por um longo período; não possuem 

a capacidade de divisão mitótica, quando os neurônios assumem seus 

papeis como elo comunicante do sistema nervoso, eles perdem sua 

capacidade sua de divisão celular. Quando destruídos, não podem ser 

substituídos. Com exceção do epitélio olfatório e algumas regiões do 

hipocampo, que possuem células tronco com capacidade de se 

diferenciarem em nervos neuronais ao longo da vida; possuem altas taxas 

metabólicas e necessitam de um contínuo e suprimento em abundância de 

oxigênio e glicose. Os neurônios não sobrevivem por mais que alguns 

minutos sem oxigênio (MARIEB; HOEHN, 2009). 

Segundo Ekman (2008), descreve as partes dos neurônios da seguinte 

maneira (figura 04): 

 Dendritos: São prolongamentos numerosos e curtos do corpo celular, 

sendo eles que recebem estímulos de outros neurônios (terminal de 

recepção) 1 neurônio – 10 mil dendritos. 

 Corpo Celular: Encontrados em maior parte do citoplasma com 

ribossomos, RER, mitocôndrias, complexo de Golgi, citoesqueleto e o 

núcleo da célula, local onde ocorre muito gasto de energia e oxigênio. 
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 Axônio: É um prolongamento que transmite o impulso nervoso 

proveniente do corpo celular, mede de centímetros até 1 metro. 

 Bainha de Mielina: Capa isolante (gordura), que envolve o axônio, 

protege e permite uma condução mais rápida dos impulsos elétricos.  

 Neurônios Mielínicos: 400km/h (neurônio motor) (motoneurônio). 

 Neurônios Amileínicos: 4 a 30km/h (poucos neurônios). 

 Terminal do Axônio ou Botão Sináptico: Parte final do axônio onde 

ficam os neurotransmissores (terminal de transmissão). 

 

 

Figura 04. Estrutura do neurônio (adaptado). 

Fonte: Machado, 2006. 
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 Células Gliais ou Neuróglias: São as células mais frequentes no sistema 

nervoso, podendo ter a proporção entre neurônios e células gliais variada 

de 1:10 a 1:50, e que exercem diversas funções. Alguns tipos de células 

gliais SNC: 

 Astrócitos: abundantes (1 neurônio : 10 astrócitos) se caracteriza 

por inúmeros prolongamentos, sendo de dois tipos: Astrócitos 

Protoplasmáticos (na substância cinzenta) e Astrócitos Fibrosos 

(na substância branca), é responsável por algumas funções tais 

como: suporte e proteção neuronal; suporte aos oligodendrócitos 

durante a mielinização; formação da membrana limitante glial (glia 

limitans); auxília no controle do microambiente neural; orientação a 

migração neuronal durante o desenvolvimento; forma cicatriz glial 

após agressões do tecido nervoso; funções imunes (apresentação 

antigênica, secreção de citocinas etc.); indução das características 

da barreira hematoencefálica. 

 Oligodendrócitos:  responsável pela produção da bainha de 

mielina no SNC. 

 Células de Schwann (macroglia): produção da bainha de mielina 

no SNP. 

 Micróglia: são células pequenas e alongadas que apresentam a 

função de defesa (fagocitária) sendo considerado equivalente no 

SNC a um tipo de macrófago, originadas a partir de monócitos 

derivados da medula óssea vermelha que migram durante o 

desenvolvimento neonatal. Sua função é fagocitose, de células 

mortas, detritos e microrganismo invasores. 

 Ependimócitos ou Células do Epêndima: são células cuboides 

ou prismáticas que revestem as paredes dos ventrículos cerebrais, 

do aqueduto do mesencéfalo e do canal central da medula espinal. 

Apresentam microvilosidades na sua face luminal e são 

geralmente ciliadas. Nos ventrículos encefálicos, essa célula se 

modifica recobrindo-o por tecidos conjuntivos, rico em capilares 

sanguíneos, que protegem a pia-máter, constituindo os plexos 

corióideos (LCR).  
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 1.3 Dopamina 

A Dopamina (DA) é um neurotransmissor que pertence ao grupo das 

catecolaminas, predominante no SNC, sendo distribuída de forma abundante, e 

também em algumas áreas periféricas específicas como o sistema renal e sistema 

cardiovascular. Possuí função estimulante e está relacionada com o controle dos 

movimentos, sensação de prazer, ao movimento corporal, memória e aprendizado, 

recompensa, comportamento e cognição bem como da regulação da produção do 

hormônio prolactina, atenção, humor e sono (BARAJAS; CORONEL; FLORÁN, 

2015). 

As alterações nos níveis de DA estão correlacionadas com a expressão de 

diversas doenças tais como a doença de Parkinson ( WARREN et al., 2017), 

esquizofrenia (EDDY, 2017), distúrbios bipolares (KWIATKOWSKI et al., 2017), 

discinesia tardia (VASAN; PADHY, 2017), Síndrome de Tourette (EDDY, 2017), 

autismo (BISSONETTEET; ROESCH, 2016), distúrbios alimentares (VOLKOW; 

WISE; BALER, 2017) e toxidependência (VOLKOW; WISE; BALER, 2017). A 

toxicodependência e a doença de Parkinson são exemplos dos problemas 

associados com os níveis anormais da dopamina (figura 05) (LANG; LOZANO, 

1998). 

A dopamina é um composto orgânico de função mista álcool, fenol e amina 

que apresenta fórmula molecular C8H11NO2.   

 

 

 

 

 

 

Figura 05. Fórmula química da dopamina. 

Fonte:  WIKIMEDIA COMMONS, 2001. 
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 A DA é sintetizada a partir da fenilalanina que sofre a ação da fenilalanina-

hidroxilase, formando a tirosina, que, uma vez na circulação, por ser ativada por 

carregadores inespecíficos para o interior da célula nervosa. A tirosina é 

posteriormente convertida em DOPA (hidroxilada diidroxifelilanina), em DA pela 

enzima aminoácido-aromático descarboxilase (figura 06) (LADER; GENTIL FILHO, 

1977). 

 

Figura 06. Esquema da síntese da dopamina. 

Fonte: LADER; GENTIL FILHO, 1977. 

 

A degradação da DA ocorre através das enzimas monoamina oxidase (MAO) 

e o catecol-0-metil-transferase (COMT), sendo o produto final da degradação da DA, 

por qualquer uma das enzimas (MAO ou COMT) é o ácido homovalínico (HVA). 

Dentro da célula, a MAO é encontrada na membrana externa da mitocôndria, a 

responsável pela produção de energia para os órgãos da célula. Existem dois tipos 

diferentes de MAO, o MAOA e MAOB. Os genes para ambos estão localizados no 

cromossomo X. As duas formas diferem ligeiramente na sua localização e na 

capacidade de metabolizar os neurotransmissores de dopamina e afins. Como o 

MAO é responsável pela degradação da dopamina, sua deficiência resulta em 

aumento da atividade da dopamina. A catecolamina-O-metiltransferase desempenha 
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um papel relativamente pequeno no metabolismo da dopamina e parece ser mais 

importante na dopamina degradante da área do córtex pré-frontal do cérebro. A 

COMT existe, tanto como proteína solúvel, como proteína de ligação de membrana 

(figura 07) (GOLAN et al., 2009).  

  

 

Figura 07. Degradação da dopamina. 

Fonte: GOLAN et al., 2009. 

 

Os receptores dopaminérgicos são pertencentes à família de receptores 

acoplados a proteína G (GPCRs).  Existem cinco subtipos de receptores: D1, D2, 

D3, D4 e D5, que são divididos em dois grupos de acordo com a sua estrutura e 

resposta biológica. O grupo D1-like é composto pelos receptores D1 e D5, e no 

grupo D2-like é composto por receptores D2, D3 e D4 (KEBABIAN, 1978). 

Os receptores de DA, são alvos de estabelecidos na farmacologia clínica de 

vários distúrbios e condições patológicas como a esquizofrenia, doença de 

Parkinson, transtorno bipolar, depressão, hiperatividade, hiperprolactinemia, tumores 
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pituitários, hipertensão, gastroparesia, náuseas e disfunção erétil (NIZNIK e VAN 

TOL, 1992). 

Os receptores da família D1 são aqueles associados a uma proteína G 

estimulatante (G3) a abertura dos canais de iônicos de cálcio e por consequência 

ocorre a despolarização da célula, o que leva a excitação dos neurônios que 

propaga o impulso elétrico. A família do D2 tem seus receptores inibitórios, pois 

hiperpolarizam o neurônio através de proteínas G inibitórias (GI), e impedem 

consequentemente a propagação do impulso (CALLIER et al., 2003). 

Os receptores também podem ser, pré e pós-sinápticos. Os receptores pré-

sinápticos, são do grupo D2 e atuam na regulação da liberação de DA para células 

pós-sinápticas. Encontrado na grande maioria nos corpos celulares e dendritos da 

substância negra e da área tegumentar ventral. Os receptores pós-sinápticos podem 

ser dos tipos D1 e D2 (WEINER et al., 1991). 

Os receptores D1 e D2 se encontram distribuídos em quantidades diferentes 

e em diferentes regiões anatômicas do SNC. O estriado apresenta altos níveis de 

expressão de ambos os grupos de receptores. Na maior parte das regiões 

neocorticais o receptor D1 tem sua expressão elevada, com menor expressão do 

receptor  D2 (HURD; SUZUKI; SEDVALL, 2001). 

Anatomicamente, os receptores estão localizados da seguinte maneira: D1 e 

D2, no caudado, putâmen, nucleus accumbens e trato olfativo; D3 áreas límbicas, 

trato olfativo, nucleus accumbens, ilhotas de Calleja do hipotálamo; D4 no córtex 

frontal, hipocampo e nucleus accumbens e D5 no hipocampo e hipotálamo 

(MATTOS; MATTOS, 1999). 

A família de receptores de DA do tipo D1 está acoplada de forma positiva à 

adenil ciclase (AC) que é responsável pelo acúmulo intracelular de adenina-

monofosfato (AMPC) e também ativa a proteína quinase (PK) dependente de AMPC  
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(figura 08) (BARAJAS; CORONEL; FLORÁN, 2015). 

 

Figura 08. Sinalização intracelular dos receptores Da D1-Like. 

Fonte: BARAJAS; CORONEL; FLORÁN, 2015. 

 

Os caminhos de sinalização intracelular dos receptores de DA D1-like 

(figura08) apontam os efeitos mediados pela DA através dos receptores do tipo D1 

pela ativação de sinais intracelulares. As setas vermelhas indicam os efeitos 

estimulantes e as setas em azul terminadas por um círculo, representa os efeitos 

inibitórios (BARAJAS; CORONEL; FLORÁN, 2015). 
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 1.3.1 Vias dopaminérgicas 

 A DA encontra-se presente em quatro regiões principais do SNC: na 

substância nigra, lobos frontais, sistema límbico (área tegumentar ventral) e na 

hipófise. No sistema nigroestriatal, os corpos celulares dos neurônios estão 

presentes na zona compacta da substância nigra, se projetam até os núcleos 

caudado e putâmen que constituem o neoestriado, alguns deles continuam até o 

córtex motor. A DA é responsável por controlar as zonas motoras do núcleo da base, 

relacionada com a motricidade somática em especial com o controle de movimentos 

involuntários. Quando se têm a morte de neurônios nessa região, no homem, 

desenvolve-se a doença de Parkinson (figura 09) (DELUCIA et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 09. Vias dopaminérgicas. 

Fonte: DELUCIA et al., 2007. 
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Nos lobos frontais, a DA está relacionada com a atenção e orientação, possuí 

um papel importante em seres humanos, em casos de dependência de drogas e 

pode ser notada em casos de transtornos de déficit de atenção/hiperatividade 

(TDAH) (LEVY, 2009). No sistema límbico, o neurotransmissor DA é responsável 

pelo controle das respostas emocionais. As áreas em questão, se relacionam com 

centros de reforço e estimulação, por esta razão, estão associadas ao aumento da 

função dopaminérgica sendo a responsável pela dependência de drogas em seres 

humanos (VOLKOW; WISE; BALER, 2017), e igualmente na esquizofrenia (EDDY, 

2017), quando se faz uso de bloqueadores dopaminérgicos para o seu tratamento. 

Em animais e em seres humanos, a dopamina é o neurotransmissor principal na 

evocação do comportamento agressivo (WALTES; CHIOCCHETTI; FREITAQ, 2016; 

ROSELL; SIEVER, 2015).  Na região da hipófise a DA libera hormônios hipofiisários, 

ativando receptores que inibem a secreção de prolactina e o hormônio do 

crescimento (GH) e controla o comportamento materno (SPINOSA; GÓRNIAK; 

BERNARDI, 2011). 

 

 1.3.2 Drogas que agem no Sistema Dopaminérgico Central: 

agonistas e antagonistas  

Segundo DELUCIA et al.( 2007), os agonistas dopaminérgicos são 

classificados como de ação direta, como por exemplo, a apomorfina e aqueles de 

ação indireta, como os derivados  da anfetamina. Os agonistas dopaminérgicos tem 

uso limitado na terapêutica. O metilfenidato é empregado nos distúrbios de déficit de 

atenção enquanto que alguns derivados da anfetamina, no controle da obesidade. 

Com relação aos antagonistas da DA seu emprego mais importante é no controle da 

esquizofrenia sendo denominados de antipsicóticos. São classificados com 

antipsicóticos clássicos e atípicos. Os antipsicóticos  clássicos  são antagonistas de 

receptores D2 pós-sinápticos da dopamina enquanto os atípicos também bloqueiam 

outros receptores de monoaminas, particularmente 5HT. A clozapina é um 

antagonista de  receptores D4. A ativação pela dopamina dos receptores D2 pós-

sinápticos inibe a produção de adenilato ciclase através das proteínas Gi, o que 

impede a conversão de ATP em AMPc, e consequentemente, interrompe a ativação 
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da proteína cinase C. Além disso, ativa os canais de K+ (hiperpolarização celular) e 

suprime as correntes dos canais de Ca+ controlados por voltagem, caracterizando 

um efeito inibitório. A inibição desses receptores pelos fármacos antipsicóticos faz 

com que o ATP passe a ser convertido em AMPc e este aumente a atividade da 

proteína cinase C. A PKC por sua vez fosforila os canais de K+, determinando seu 

fechamento e a repolarização sináptica. O resultado desse evento é o favorecimento 

dos processos de despolarização da membrana com a consequente inibição dos 

sintomas positivos da doença (BRUNTON; CHABNER; KNOLLMANN, 2012).O 

antagonista D1, SCH-23,390, não tem uso clínico. 

A figura 10 ilustra os principais agonistas e antagonistas que interagem com 

os receptores da dopamina. 
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Figura 10. Distribuição dos receptores de dopamina nas áreas sistema nervoso central, agonistas e 
antagonistas dopaminérgicos e a intensidade de interação com os receptores. Com relação aos 
antagonistas e agonistas + baixa ligação. ++ ligação mediana. +++ alta ligação aos receptores. Nas 
áreas do sistema nervoso central os sinais indicam a densidade dos receptores das vias 
dopaminérgicas. 

Fonte: Essa imagem foi elaborada a partir das referências (BEAULIEU; ESPINOZA; GAINETDINOV, 
2015; SOKOLOFF; LE FOLL, 2017; MARAMAL et al., 2016 

 

 1.4 Síndrome de Kabuki 

No ano de 1991 no Japão foi descrita pela primeira vez a Síndrome de Kabuki 

por dois médicos, Niikawa e Koruki, que através de pesquisas realizadas com 

crianças nesse país, embora os estudos fossem descritos de maneira 

independentemente, foi publicado de forma simultânea.  A síndrome herdou o nome 

de Kabuki, por suas características faciais serem semelhantes as das máscaras ou 
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das maquiagens usadas por atores de teatro na cultura japonesa (SCHOEN-

FERREIRA et al., 2010). 

No Japão a estimativa da prevalência da Síndrome de Kabuki é de 

aproximadamente, 30 casos por milhão de nascimentos, e um número de novos 

diagnósticos em todo o mundo se faz cada vez mais crescente (GABRIELI et al., 

2002). 

A etiologia da Síndrome de Kabuki é desconhecida, sabe-se que é uma 

doença genética rara, que pode acometer qualquer raça ou gênero. A maior parte 

dos casos é esporádica e é sugerida por algumas famílias como hereditariedade 

autossômica dominante (DUPONT et al., 2010). 

O diagnóstico é estabelecido á partir dos achados clínicos, a Pentâde de 

Niikawa que se resume em cinco características fundamentais sendo elas: 

Dimorfismo facial: as alterações faciais estão presentes em 100% dos casos e 

apresentam: reversão da pálpebra inferior, fenda palpebral alongada, 

sombrancelhas em forma de arco, cílios alongados, esclera azulada, ponta nasal 

voltada para baixo, palato alto e fendido, fenda labial, orelhas dimórficas, 83% dos 

casos (SCHOEN-FERREIRA et al., 2010). 

Em genética, o padrão de herança é autossômico dominante, e a maioria 

corresponde a casos esporádicos, o que sugere que se trata de novas mutações.  

Foram reportadas anomalias cromossômicas associadas a síndrome, desde o ano 

de 2010, as mutações no gene KMT2D, antes chamado MLL2 (12q12-q14), foram 

identificadas como as principais causas da síndrome em pacientes afetados. Existe 

una variante denominada Kabuki tipo II, com mutações descritas do gene KDM6A 

(Xp11.3), com um fenótipo similar, porém, com um padrão de herança dominante 

ligado ao cromossomo X (ANDERSEN et al., 2014).  

Outras alterações também foram descobertas como defeitos cardíacos 

congênitos, anomalias fístulas peri-oculares, e diversas anomalias dentárias. 

Anomalias esqueléticas: As alterações esqueléticas estão presentes em 92% dos 

casos: braquidactilia, clinodactilia, escoliose, luxação congênita de quadril e luxação 

da patela. Anormalidades dermatoglíficas: Coxins adiposos na face palmar da 

falange distal, aumento das presilhas ulnares, ausência de trirrádio digital e aumento 

https://translate.googleusercontent.com/translate_c?depth=1&hl=pt-BR&prev=search&rurl=translate.google.com.br&sl=en&sp=nmt4&u=https://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/congenital/&usg=ALkJrhjwePr9_xrqBs1UKMVuayUb_OnfWQ
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de padrões hipotênares. Retardo mental de leve a moderado: Ocorre em 92% dos 

casos. Deficiência no crescimento pós-natal: ocorre em 83% dos casos (ADAM; 

HUDGINS; 2005; SCHOEN-FERREIRA et al., 2010). 

Também podem ocorrer outras patologias como: alterações geniturinárias, 

anomalias gastrointestinais, incluindo atresia anal, ptose e estrabismo. As diferenças 

funcionais podem incluir: aumento da susceptibilidade a infecções e distúrbios 

autoimunes, convulsões, anormalidades endocrinológicas, incluindo telarca 

prematura em mulheres, problemas de alimentação e perda auditiva (SANTOS et al., 

2013). 

Ao longo da vida, o fenótipo evolui e as características faciais típicas tornam-

se menos evidentes no adulto jovem, predominando a baixa estatura, a obesidade e 

a macrocefalia relativa. Sendo a identificação desta síndrome recente, a doente mais 

velha com diagnóstico de SK no ano de, 2010 tinha 49 anos, ainda não está 

completamente definida a história natural da doença. No entanto, os dados 

publicados nas literaturas, sugerem não haver diminuição na esperança de vida. A 

maioria das manifestações clínicas, são passíveis de intervenção médica e mediante 

um acompanhamento adequado é possível garantir a integração social e a qualidade 

de vida destes indivíduos (DUPONT et al., 2010). 

Esta síndrome foi considerada inicialmente como prevalente apenas no 

Japão, mas agora foi descrita em todo em todo o mundo. A mutação genética na 

síndrome de Kabuki foi identificada em 2010 como   mutações MLL2 em pacientes 

com esta síndrome (síndrome de Kabuki 1, OMIM 147920) (NG et al., 2010). 

Bögershausen, Bruford e Wollnik (2013) propuseram uma nova nomenclatura para o 

gene MLL2 como KMT2D [5]. O gene KMT2D consiste em cinquenta e quatro 

regiões de codificação e funções como histonelisina N-metiltransferase em várias 

vias de sinalização como a modulação epigenética. No entanto, mutações no gene 

KMT2D sozinhas não podem explicar as alterações em todos pacientes com a 

síndrome de KABUKI. Mais recentemente foram identificadas mutações no gene 

KDM6A, que codifica uma histona desmetilase que interage com KMT2D (síndrome 

de Kabuki 2, OMIM 300867) (LEDERER et al., 2013).  Portanto, a análise de 

mutações nos genes KMT2D e KDM6A ajudam a confirmar o diagnóstico em 
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pacientes que preencheram os critérios do diagnóstico clínico para a síndrome de 

Kabuki (LIU et al., 2015). 
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RESUMO 

 

Objetivos: os camundongos mutantes de bate palmas ("aplaudir", símbolo - bapa) induzidos 

pela ENU química mutagênica e afetados por uma mutação recessiva, apresentam 

incoordenação motora, evidenciada por alterações posturais com movimentos anormais dos 

membros traseiros quando levantados pela cauda. Como o comportamento motor está 

relacionado ao sistema dopaminérgico, este estudo avaliou comportamentos relacionados ao 

sistema dopaminérgico central neste mutante. Métodos: foram utilizados camundongos 

mutantes bapa machos e camundongos balb C. O teste de campo aberto e a coordenação  

motora avaliada em uma trave elevada, foram empregados para avaliar os comportamentos 

exploratórios / motores. O labirinto elevado foi usado para estudar a ansiedade e a memória 

emocional. A estereotipia induzida pela apomorfina e os efeitos de SCH-23.390 e 
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antagonistas de clozapina D4 foram utilizados para avaliar o sistema dopaminérgico. 

Principais achados: em relação ao balb C, os camundongos bapa mostram: 1) aumento da 

atividade geral observada no campo aberto durante 4 dias, e após exposição a um novo objeto 

nos 5 dias de observação e na latência para atravessar a trave elevada; 2) nenhum 

comportamento semelhante à ansiedade e na memória emocional foram observados no teste 

de labirinto em cruz elevado; 3) aumento do comportamento de farejar e diminuição do tempo 

de imobilidade e nenhuma diferença na frequência de levantar após administração de 

apomorfina; 4) em ambas as linhagens, o SCH-23,390 bloqueou todos os parâmetros de 

estereotipia induzidos pela apomorfina, mas o comportamento de farejar foi atenuado; 5) o 

antagonista D4 não afetou o comportamento de farejar, mas comportamento de levantar foi 

reduzido em ambas as cepas. Conclusões: a hiperatividade dos camundongos bapa é devido 

ao aumento do sistema dopaminérgico central, envolvendo principalmente os receptores DR1, 

mas não o receptor D4. 

 

Palavras-chave: campo aberto, trave elevada, estereotipia; apomorfina, clozapina; SCH-

23,390. 
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ABSTRACT 

 

Aims: The mutant bate palmas (“applauding”; symbol - bapa) mice induced by the mutagenic 

chemical ENU and affected by a recessive mutation, present motor incoordination, evidenced 

by postural alterations with abnormal movements of the hind limbs when raised by the tail. 

Because motor behavior is related to dopaminergic system, this study evaluated behaviors 

related to central dopaminergic system in this mutant mouse. Methods: Male bapa mutant 

mice and it wild strain wt, were used. The open field test and motor coordination in a wooden 

beam were employed to evaluate exploratory/motor behaviors. The elevated plus maze was 

used to study the anxiety and emotional memory. The stereotypy induced by apomorphine 

and the effects of SCH-23,390 and clozapine D4 antagonists were used evaluated the 

dopaminergic system. Key findings: Relative to wt, the bapa mice shows: 1) increased 

mailto:marthabernardi@gmail.com
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general activity observed in the open field during 4 days, after exposure to a new object in the 

5 day of observation and in the latency to cross the wooden beam; 2) no anxiety-like behavior 

and in the emotional memory were observed in the elevated plus maze; 3) increased sniffing 

behavior and decreased immobility time without differences in rearing behavior after 

apomorphine administration;4) in both strains the SCH-23,390  blocked all parameters of 

stereotypy induced by apomorphine but attenuated sniff behavior;5) clozapine did not affect 

the sniffing behavior but reduced rearing behavior in both strains. Conclusions: the 

hyperactivity of bapa mice is due to an increase in central dopaminergic system, mainly 

involving the DR1 receptors but not the D4 receptor.  

 

 Key words: open field, wooden beam, stereotypy; apomorphine, clozapine; SCH-23,390.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



40 
 

 
 

 3.1 INTRODUCTION  
 
 
In 2006 the group of Massironi et al (2006) produced  new mice mutations with the 

potent chemical mutagen ethylnitrosourea (ENU). One of them was affected by a recessive 

mutation and was called as bate palmas (“applauding”; symbol - bapa). Bapa  presentes motor 

incoordination, evidenced by postural alterations with abnormal movements of the hind limbs 

when raised by the tail (Massironi et al., 2006). 

 A mutation in the lysine (K) -specific methyltransferase 2D gene (KMT2D2, also 

known as MLL2 or MLL4) on chromosome 15 was identified as a strong candidate for bapa 

mutation. This mutation was confirmed by DNA sequencing by the Sanger method. A 

mutation with loss of function in the KMT2D gene, located on chromosome 12 in humans, 

has been described causing Kabuki syndrome, a rare, autosomal dominant congenital 

anomaly, also known as Niikawa-Koruki syndrome(Adam and Hudgins, 2005). Wessels et al 

( 2002), in a review about 300 patients with Kabuki syndrome, stated that 87% demonstrate 

some cognitive impairment, 30% demonstrate hypotonia, 25% demonstrate microcephaly, and 

8% demonstrate seizures. Also, choreiform movements and bilateral dysmetria were evident 

in the upper extremities of a patient with Kabuki syndrome. Grunseich et al.(2010) described 

a patient with Kabuki syndrome who presented with physiologic tremor in her distal upper 

extremities. 

The phenotype characterization of the bapa mutant mice showed that relative to the 

wt, the male bapa mice presented increased fall of the posterior train, lower response in the 

auricular reflex and in response to the tail grip. Both males and females had a decrease in the 

righting reflex compared to its wild type, the BALB /c mice In the forced swim test males and 

females mutants swim in a tilted position relative to the controls and become more 
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immobile(Oliveira et al., 2016). These data suggest that the bapa mutant mice have motor 

impairment.  

It is know that the dopaminergic (DAergic) system controls the motor activity 

particularly by the nigrostriatal DAergic system (Rothwell, 2011;Grillner and Robertson, 

2016). Bernardi et al (1979) showed that the open field test is suitable to investigate the motor 

function in rats. Moreover, administration of D1/D2,D3,D4 and D5 DAergic agonist, 

apomorphine,  induces stereotypy and is used  to investigates the DAergic system related to 

motor function (Bernardi and Palermo-Neto, 1984;Bianchi et al., 1986;Canales and Graybiel, 

2000).  

 The objective of this study was to evaluate the involvement of DAergic system in our 

mutant mice because they present abnormal movements suggesting a disturbance on motor 

system. Moreover, the stereotyped behavior and its blockage with DAergic antagonists of D1 

and D4 receptors were performed to investigate the involvement of these receptors on motor 

disturbance of bapa mice. We employed the specific dopaminergic D1 antagonist SCH-

23,390 (Bourne, 2001) and the D4 antagonist, clozapine (Hippius, 1989) to investigate the 

involvement of these receptors on stereotypy of bapa mice in the neostriatum (Briere et al., 

1987;Presti et al., 2003).  
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 3.2 MATERIAL AND METHODS 

  3.2.1 Ethics statement 

The present study was approved by the Ethics Commission of the University Paulista 

(permit no.  055/17 -CEUA/ICS/UNIP). All efforts were made to minimize the suffering of 

the animals and reduce the number of animals used. The experiments were performed in 

accordance with good laboratory practice protocols. 

  3.2.2 Animals 

A total of 60 mutant male bapa and 63 BALB/ c (wild-type mice- wt), with 90 days of 

age were obtained from the facilities of the Instituto de Ciências Biomédicas (ICB|USP) and 

maintained in University Paulista facilities. The mice were housed in groups of five in 

microisolator cages under controlled temperature (22-26°C) and humidity (50-65%) in 

artificially lit rooms on a 12 h/12 h light/dark cycle (lights on at 7:00 AM) with free access to 

filtered water and irradiated food (BioBase, Águas Frias, Brazil). Sterilized, residue-free 

wood shavings were used for animal bedding. The experiments were performed ten days after 

the animals arrival to the facilities to habituated with the new conditions.   

  3.2.3 Drugs 

Apomorphine hydrochloride (Sigma-Aldridge) was dissolved in distilled water 

immediately before treatment and injected by s.c route. The dopaminergic antagonists 

D1,R(+)- SCH-23,390 hydrochoride (Sigma-Aldridge)  and the D4 antagonist , clozapine 

(Sigma-Aldridge)  were dissolved in saline solution 0.9% and administered by i.p. route. The 

control groups received either distilled water or saline solution 0.9% depending on the 

experiment.   
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  3.2.4 Opem field behavior 

The open field (OF) was used to assess the mice motor behavior and general activity  

as previously described (Gusmão et al., 2013).   The behavior in  the OF were observed daily 

for 4 days because increases in the DAergic system reduces the habituation in the open field 

(Furlan and Brandão, 2001). The OF apparatus was a white circular wooden arena. The open-

field used in the present study was a circular wooden box (40 cm in diameter and 50 cm high) 

with an open top and a floor divided into 19 squares. The apparatus was placed in a sound-

attenuated room with dim light (55 lx at the OF arena). In the OF test, each animal was placed 

in the center of the arena and observed for 5 min. The OF was cleaned with a 5% alcohol 

solution between sessions to remove any odors. We evaluated the total frequencies of 

locomotion frequency as the animal entering one area of the arena floor with all four paws, 

the rearing frequency with which the mice stood on their hind legs in the maze, the duration 

of immobility (the length of time in seconds during which the animal did not engage in any 

motor activity, i.e., the head, trunk, and limbs were still) and grooming (duration of time the 

animal spent licking or scratching itself while stationary).  

  3.2.5 Interaction with a new object in the open field 

This test was performed to investigates the effects of a new object on general activity 

of bapa and wt mice after repeated exposure to open field. Thus, in the day after the last open 

field observation, the same mice and the same parameters were employed to observed for the 

new object interaction test.  

  3.2.6 Aversive Wooden Beam 

The fine motor coordination and balance were evaluated through the wooden beam. 

This model was adapted from the one described by Luong et al(2011) and the objective of this 

test is for the mouse to stay upright and walk across an elevated narrow beam to a safe 
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platform. The apparatus was a wooden beam with 1.5cm wide and 150 cm long and 20 cm 

supported on the floor two platforms triangle at each end. During the experiment, this beam 

was leaning on a balcony of the observation room.  In the initial platform was a light, working 

as aversive stimulus and the final platform a dark box with wood shavings housing box, 

serving as a shelter and stimulus for the animal crossed. In the first and second day of 

training, each mouse was placed on the platform for five minutes, during which time the 

animal explored the beam. The animals were subjected to three sessions of 5 minutes each. 

On the third day the test was performed, animals were placed in the starting platform and the 

time in seconds to cross the beam was measured.  

  3.2.7 Elevated-plus maze (EPM) 

This test was used to investigates the  anxiety (Lister, 1987) and emotional memory 

related to learning and memory(Frisch et al., 1997;Alvarez and Ruarte, 2002). Two sessions 

were performed in two consecutive days: in the first session the anxiety-like behavior was 

evaluated by the time and number of entries in the open and closed arms. In the second 

session the emotional memory was evaluated by the escape to the closed arms (increased time 

in the closed arms). The EPM device used was made of wood and had two open arms (23.5 

cm × 8 cm) and two enclosed arms of the same size with 20 cm high walls; the apparatus was 

elevated 80 cm above the ground, it was placed in a sound-proof room with room lamp of 

100W (at the floor of apparatus 400 lx). In the first session, the animals were allocated in the 

center of the maze faced to the closed arms and in the second session, faced to the open arms 

and observed during 3 min. The time and the number of entries in open and closed arms were 

evaluated. The EPM was cleaned with a 5% alcohol solution between sessions to remove any 

odors.  
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  3.2.8 Stereotyped behavior induced by apomorphine 

The stereotyped behavior induced by the DAergic agonist apomorphine was observed 

to examine the possible role of the DAergic system with the motor disturbance of bapa mice.  

The stereotyped behavior was observed in a glass box (30x15x15 cm) after 0.6 mg/kg of 

apomorphine administration by s.c. route. The time in seconds of sniff, frequency of rearing 

(mice stood on their hind legs with the body in vertical position in the box maze) and 

immobility (duration in seconds which the animal did not engage in any motor activity) were 

observed during 20 min after apomorphine administration. 

  3.2.9 Experimental design 

In the open field studies, eight mutant bapa and eight wt mice were observed during 

four days in the open field. In the following day after the open field evaluation, these mice 

were observed for the interaction with a new object. Others mice were observed in the 

aversive wooden beam (10 bapa and 10 wt mice) trained for two days and in the third day 

tested. In the elevated plus maze fifteen bapa and fifteen wt mice were employed and 

observed in two consecutive days. Two experiments were performed to evaluate the 

stereotyped behavior. In the first experiment, the stereotypy was observed in eight bapa and 

eight wt mice during 20 minutes, starting immediately after the  injection of  0.6 mg/kg of 

apomorphine, sc. In the second experiment  bapa and  wt  were divided into six  groups as 

follows: 1) wt group treated with saline 0.9% fifteen minutes before apomorphine (0.6 mg/kg 

(WS group n= 8); 2) wt group treated with 0.4 mg/kg SCH-23,390 (Mattingly et al., 1993) 

fifteen minutes before apomorphine (0.6 mg/kg (WD1 group, n=6 ); 3)  wt mice  treated with 

2 mg/kg of clozapine (Lassen, 1979) fifteen minutes before apomorphine (0.6 mg/kg (WD4 

group, n=8); 4) bapa group treated with saline 0.9% fifteen minutes before apomorphine (0.6 

mg/kg (BS group, n=6); 2) Bapa group treated with 0.4 mg/kg SCH-23,390  fifteen minutes 
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before apomorphine (0.6 mg/kg (BD1 group, n= 7); 3); bapa group treated with 2 mg/kg of 

clozapine,  fifteen minutes before apomorphine (0.6 mg/kg (BD4 group, n=6).The mice were 

observed during  50 minutes. In all experiments, the mice of wt or  bapa strains were 

alternately observed during the light phase of the light/dark cycle between 2:00 PM and 5:00 

PM to avoid interferences of the circadian cycle.    

  3.2.10 Statistical analysis 

Homoscedasticity was verified using an F-test or Bartlett’s test. Normality was 

verified using the Kolmogorov–Smirnov test. Student’s t-test (unpaired, two-tailed) and the 

Mann–Whitney test was used to compare parametric and non-parametric data, respectively, 

between groups. The one way ANOVA followed by the Tuckey’s test to analyze the 

antagonist’s effects. The two-way ANOVA followed by Bonferroni’s test was used to analyze 

data with two factors. Results are expressed as the mean ± SEM or as medians and 

interquatile range.  In all cases, results were considered significant at p < 0.05. 
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 3.3 RESULTS 

  3.3.1 Open field behavior 

Fig,1 show the general activity of bapa and wt mice in the open field observed during 

4 days 

The strain of mice modify the locomotion frequency (F1.56 =11.99, p=0.002) but the 

not the sessions (F 1.56 =0.31, p = 0.82) without interaction between both factors (F3.56 

=0.20, p = 0.90). An increased locomotion frequency of bapa mice relative to wt in sessions 2 

to 4 was observed (fig.1A).  

The strain of mice modify the rearing frequency (F1.56 = 20.69, p< 0.0001) but the 

not the sessions (F 1.56 =1.07, p = 0.37) without interaction between both factors (F3.56 

=0.21, p = 0.89). An increased rearing frequency of bapa mice relative to wt in sessions 2 to 4 

was observed (fig.1B). In the immobility duration (fig.1C)  the  strain of mice influenced the 

results (F1,56 = 35.65, p< 0.0001), the sessions (F1.56 = 3.31, p = 0.03)   without interactions 

between the factors (F3,56 =2.13, p=011). Relative to wt mice, the bapa mice show decreased 

immobility duration from session 2 until session 4.  In the   grooming behavior (fig.2D), the 

strain of mice influenced the results (F1,56 = 4.01, p = 0.05) but not the sessions (F1,56 = 

1.09, p = 0.36) without interactions between the factors (F3,56 = 0.14, p = 0.03) . The bapa 

mice shows increased duration of grooming in the last session compared to wt mice. Thus, 

bapa mice showed increased general activity or, alternatively, did not habituate to the 

repeated exposure to the open field relative to the wild type. 

  3.3.2 Interaction with a new object in the open field 

Exposure to a new object increased the locomotion frequency in bapa mice relative to 

wt (t=3.53, df=14, p=0.003, fig.2A).Also in increased rearing frequency was observed after 

exposure to a new object in in bapa mice relative to wt (t=2.48, df=14, p=0.03, fig.2B). No 
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differences between groups were observed in the grooming (t= 1.89, df=14, p = 0.08, 

fig.2C).The immobility duration was decreased in the mutant mice relative to the wild type 

(t=3.15, df=14, p= 0.007, fig.2D).Thus, exposure to a new object in the open field increased 

the interaction with the new object in both mice strain but the bapa mice had increased levels 

of activity relative to wt mice. 

  3.3.3 Aversive Wooden Beam 

The time to cross the beam was significantly increased in bapa mice [13 (9-20)   

relative to wt mice [9(7-15), U=23.50, p = 0.05, fig.2E). Thus, a decreased motor coordination 

was observed in the bapa mice relative to wt group. 

  3.3.4 Elevated-plus maze 

The frequency of entries in open arms (fig.2F) was influenced by the sessions (F1,56 = 

16.62, p = 0.0001) but not by the strain  of mice (F1,56 =0.36, p = 0.55) without interaction 

between factors (F1,56= 0.07, p = 0.79). The frequency in the open arms of both groups was 

decreased in the second session relative to first session.  The time in open arms (fig.2G) 

was influenced by the sessions (F1,56 = 9.37, p = 0.0003) but not by the strain of mice (F1,56 

=1.29, p = 0.26) without interaction between factors (F1,56= 1.17, p = 0.28). The time in open 

arms of both groups decreased in the second session relative to first session. The frequency of 

risk assessment (fig.2H) was influenced by the sessions (F1,56 = 87, p < 0.0001) and strain of 

mice (F1,56 =4.02, p = 0.05) without interaction between factors (F1,56= 3.34, p = 0.07). The 

risk assessment was decreased in the second session in both groups. In addition, the risk 

assessment of bapa was decreased relative to wt group in the first session. Thus bapa mice 

did not show anxiety-like behavior except for a reduced risk assessment. In addition, no 

differences between the emotional memory of both strain were observed.  
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  3.3.5 Stereotyped behavior induced by apomorphine 

Fig.3 shows the stereotyped behavior induced by 0.6 mg/kg of apomorphine in bapa 

and wt mice observed 10 and 20 minutes after the DAergic agonist.  

The sniff time (fig.3 A) the strain of mice influenced the results (F1,28 =36.21, p < 

0.0001), the sessions (F1,28 = 20.28, p = 0.0001) with interaction between factors (F1,28 = 

4.66, p = 0.04). In the first (p < 0.001) and second session (p< 0.05) the bapa mice showed 

increased the time of sniff. The total time of sniff increased in bapa mice relative to Wt mice 

(t= 5.74, df=14, p< 0.0001, fig.3B).  

Rearing behavior (fig.3C) was influenced by the time of observation (F1,28 = 8,82, p= 

0.006) but not by the strain (F1,28 = 0.93, p = 0.34) without interaction between factors 

(F1,28 = 1.53, p= 0.23). The total rearing (fig.3 D) was not different between groups( t=0.19, 

df=14, p = 0.43). 

The immobility time (fig.3E) was influenced by both strain of mice (F1,28 = 65.13, P 

< 0.0001) and sessions (F1,28 = 19.30, P= 0.0001)  with interaction between factors (F1,28 = 

7.66, p=0.01). In both sessions (first session – p < 0.001, second session p = 0.01) the 

immobility time was reduced in bapa mice relative to the wild mice. The total immobility 

time (fig.3F) was decreased in the mutant mice relative to the wild mice (t=7.10, df=14, p < 

0.0001).These data revealed that apomorphine increased the stereotypy in bapa mice relative 

to wt mice. 

  3.3.6 Effects of D1 and D4 receptor antagonists on stereotyped 

behavior induced by apomorphine 

Fig.4 shows the effects of both, D1 and D4 antagonists, in wt and bapa mice 

stereotyped behavior induced by apomorphine. 

Relative to sniffing the one way ANOVA indicates significant differences at 10 min 

(F5,35 = 17.35, p< 0.0001), at 20 min (F3,35 = 20.331, p< 0.0001) and in the total sniffing 
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(F5,35 = 20.76, P< 0.0001).  The sniffing behavior at 10 min (Fig.4A) was reduced by D1 

antagonist in wt group (p< 0.0001) but not in bapa mice.  The D4 antagonist did not affected 

this behavior in both, wt and bapa mice. At 20 min (Fig 4B), the effects of D1 antagonist 

reduced the sniffing behavior in both strains but this effect was attenuated in bapa mice ( p< 

0.0001 in wt mice and p< 0.001 in bapa mice).  The  D4 antagonist did not modify the 

sniffing behavior in both strains in this time. Thus, the  total sniffing (Fig.4 C)was reduced  in 

both strains after the D1 antagonist with attenuation in bapa mice. The D4 antagonist did not 

modify this behavior in both strains. The D1 antagonist attenuated this behavior in bapa mice 

while the D4 antagonist did not affected sniffing behavior in both strains. 

The one way ANOVA indicates significant differences between groups at 10 min 

(F5,35 = 9.34, p< 0.0001) but not at 20 min (F5,35 = 1.0, p = 0.43); in total rearing 

differences were observed between groups (F5,5 = 10.7, p < 0.001).  The multiple 

comparisons test indicates that both antagonists reduced the behavior at 10 min in both strains 

with a slight attenuation after the antagonists in bapa mice (Fig.4 D). No differences were 

observed between groups at 20 min (Fig.4E). An attenuation of rearing frequency was 

observed after D1 and D4 antagonists in bapa mice (Fig.4F). 

Relative to immobility, the one way ANOVA indicates significant differences between 

groups at 10 min (F5,35 = 14.81, p< 0.0001), 20 min (F5,35 = 19.60, p < 0.0001) and in total 

immobility (F5,35 = 19.23, p < 0.0001). The immobility time was increased in wt mice with 

D1 treatment at 10 min (Fig.4G) but not by the D4 antagonist. No effects were observed in 

bapa mice after both antagonists. At 20 min (Fig.4 H), only the D1 antagonist increased the 

immobility time in bapa mice while the D4 antagonist did not. In the total time of immobility 

(Fig.4I), the effects of D1 antagonist was attenuated in bapa mice while the D4 antagonist did 

not affected this behavior. 
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 3.4 DISCUSSIONS 

The increased locomotion and rearing frequencies and the decreased immobility in the 

open field of bapa mutant suggest a hyperactivity of motor system. Increases of general 

activity and decreased immobility time in the open field were tightly related to increases on 

striatal DAergic system (Bernardi and Palermo-Neto, 1979;Bernardi et al., 1981;Bernardi and 

Palermo-Neto, 1984;Ito et al., 2002;Samadi et al., 2013).  Moreover, this hyperactivity 

remained during four sessions and was stimulated by the presence of a novel object, 

suggesting that bapa mice did not habituate to the novel environment(Bouwknecht et al., 

2004).   

Many studies have reported that systemic injections of DAergic drugs result in 

profound changes in the behavior of animals in the open field (Bernardi et al., 1981;Chow and 

Beck, 1984;Carr and White, 1987;Frussa-Filho and Palermo-Neto, 1988;Bruhwyler et al., 

1991;Calipari and Ferris, 2013;Siviy et al., 2015) . At the same time, it is hypothesized that 

increased brain DAergic activity prevents animals from habituating to a novel environment 

(Furlan and Brandão, 2001).  

These effects were mainly resulted from stimulation of the striatal DAergic system 

related to motor function(Dowd and Dunnett, 2007;Kreitzer, 2009;Bolivar et al., 

2000;Groenewegen, 2003). Thus, the increased activity and the lack of habituation in the open 

field of the bapa mutant suggest an increased activity of striatal DAergic system. Motor 

coordination of bapa mice in an elevated wooden beam and  confirm that the increase on open 

field behaviors were related to motor function. In this respect, the mutant mice showed 

increased time to cross the wooden beam relative to Wt mice. Motor coordination is under the 

control of several brain areas. The  basal ganglia  with their inhibitory afferent’s, control 

motor outputs either directly by their projections to the midbrain motor regions or indirectly 

through the thalamic nuclei (Hikosaka, 1991).Also the cerebellum is  classically involve in the 
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coordination of ballistic movements and in their accompanying postural adjustment (Habas, 

2001).  

The cerebellum and the basal ganglia are major subcortical nuclei that control multiple 

aspects of behavior largely through their interactions with the cerebral cortex(Alexander, 

1986). Substantial interactions were reported between the cerebellum and the basal ganglia 

(Bostan et al., 2010). Evidences show that these pathways may provide a useful framework 

for understanding cerebellar contributions to the manifestation of two prototypical basal 

ganglia disorders, Parkinson's disease and dystonia (Purzner et al., 2007; Avanzino and 

Abbruzzese, 2012). 

Thus, the hyperactivity and the motor coordination reinforces that our mutant mice 

have motor dysfunction relative to those of the wild strain.  

However habituation also involves learning  processes(Rankin et al., 2009). 

Habituation is a form of simple, nonassociative learning in which the magnitude of the 

response to a specific stimulus decreases with repeated exposure to that stimulus(Grissom and 

Bhatnagar, 2009). Rats and mice submitted to repeated exposure to the open field show a 

decreased exploratory behavior(Russell and Williams, 1973;Kvist, 1983). Repeatedly testing 

in the open-field sometimes leads to a decrement in the amount of locomotor activity 

displayed (Pare, 1964), which may be explained in terms of the habituation of exploratory 

responses since activity may reflect exploratory tendencies as well as emotionality or 

fearfulness (Whimbey and Denenberg, 1967). 

  Habituation to a novel environment is commonly defined as a change in exploratory 

or locomotor activity over time (intrasession) or with repeated exposures (intersession). 

Several  neuroactive substances are known to influence habituation, but the serotonin, 

acetylcholine, dopamine (DA) and glutamate neurotransmitters have the most important roles 

in habituation (Leussis and Bolivar, 2006).  



53 
 

So, a lack of habituation observed in the open field would be due to a deficit in 

learning to the novel environment. Bertoglio and Carobrez (2000) examined the influence of 

re-exposure to the elevated plus maze in rats. Re-exposure to the elevated plus maze increases 

the open arm avoidance, therefore suggesting elicit an avoidance learning response to open 

arms. Then, we submitted our mice to a schedule of aversive learning with spatial 

characteristic similar to the open field, the elevated plus maze in two consecutive sessions. 

Our results shows that both, the  bapa  and Wt mice, in the second exposure to the elevated 

plus maze remained low time in the open arms and reduced the number of entries in the open 

arms relative to the first session. Thus, a decreased learning to the novelty in the open field 

could be discarded   in the present study.  

DA modulates several physiological brain’s functions, as locomotion, reward and 

cognition, through different DAergic pathways (Albanese et al., 1986). The DAergic system 

originates in two mesencephalic nuclei, the ventral tegmental area (VTA)  and the substantia 

nigra pars compacta (Zeiss, 2005). DAergic neurons of the VTA project to limbic areas and 

cortical regions, forming the mesolimbic- and mesocortical pathways (Arias-Carrián et al., 

2010). The projection of  the substantia nigra pars compacta  to the dorsal striatum constitute 

the nigrostriatal pathway(Chinta and Andersen, 2005).  Mesolimbic and nigrostriatal 

dopaminergic pathways may be important in the mediation of locomotor activity and 

stereotyped behaviors. Locomotion has been related to nucleus accumbens (Liu et al., 1998) 

whereas  stereotyped behaviors,  including sniffing,   are more closely associated with the 

caudate-striatum (Rapp and Vollmer, 2005). 

The basal ganglia dysfunction might produce repetitive behaviors known as motor 

stereotypies(Canales and Graybiel, 2000;Rapp and Lanovaz, 2011). By applying psychomotor 

stimulants (Mason et al., 1978;Mattingly et al., 1988;Presti et al., 2004;Budygin, 2007) and a 

direct DA receptor agonist (Mason et al., 1978; Feigenbaum et al., 1982) stereotypy was 
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induced in rats and mice. Thus, imbalances between the organized basal ganglia circuits may 

represent a neural correlate of motor stereotypy(Graybiel, 2000;Silberberg et al., 2002). 

Presently the stereotyped behavior was induced by s.c injection of apomorphine a 

direct dopaminergic agonist(Jenner and Katzenschlager, 2016). Apomorphine as a natural 

product has been used over many centuries as an emetic, sedative, anticonvulsant, 

antipsychotic, alcohol dependence, sexual dysfunction and, formerly, in the treatment of 

Parkinson’s diseases(Lees, 1993) . The mice were observed in a glass box which enable the 

expression of “continuous licking and gnawing of cage grids” as previous recorded (Frussa-

Filho and Palermo-Neto, 1990;Lazarini et al., 2004;Sandini et al., 2015). The main parameter 

expressed in this contingency was the sniffing and rearing behaviors and immobility time.  

Apomorphine display different strains of motility patterns with respect to oral 

stereotypy and locomotor activities. Sniff and rearing stereotyped behavior induced by 

psychostimulants  consists of motor responses that are repetitive, invariant, and seemingly 

without purpose or goal(Kelley, 2001). The temporal effects of apomorphine in these 

behaviors were examined because their short time of effects even when subcutaneous 

administered (Jenner and Katzenschlager, 2016). 

Among the behavioral parameters of stereotyped behavior, sniffing was induced by 

several drug acting on DAergic system (Kelley et al., 1988;Tiedtke et al., 1990; Kitanaka et 

al., 2009), including apomorphine(Germeyer et al., 2002).  Sniffing together with licking  are 

classes of oral stereotypy (Schulz et al., 1981; Germeyer et al., 2002). Presently, the temporal 

analysis of sniffing showed increased sniffing in both sessions in bapa mice relative to wt 

mice. Similar results were observed in total time of sniffing.  

Bapa mice showed a diminished in both temporal and total immobility time relative to 

wt mice, reinforcing the proposition that the increase of the locomotion results from a motor 

hyperactivity.   Interesting, in the temporal analysis of rearing and when the values were 
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summed no effects of apomorphine were observed. Probably the lack of effects on rearing 

behavior occurred due to  experimental conditions because the animals were observed in a 

glass box that reduced the support to stand. 

 Thus, in our experimental conditions we propose that the increased time of sniffing 

and rearing behaviors and the reduced in immobility time indicates an increased DAergic 

striatal system activity.  

DA-induced effects are mediated by five G protein-coupled receptors (DR), classified 

into two subclasses: the D1R-like and D4R-like receptor families: D1R-like receptors (D1R 

and D5R)(Maurice et al., 2001)(Witkowski et al., 2008)(Yang et al., 2013),  and  D2R-like 

receptors (D2R, D3R and D4R (Missale et al., 1998). DAergic receptors play key roles in 

physiological brain functioning, since they regulate locomotion, reward, cognitive functions 

and goal-oriented behaviors(Ledonne and Mercuri, 2017). Modifications in DAergic receptors 

expression and signaling occur in different neurological and neuropsychiatric disorders. In the 

striatal DAergic system a combined of D1R/D2R receptors are recognized.  

Thus, we investigated the effects of dopaminergic antagonists on apomorphine 

induced stereotypy to verify if the motor dysfunction of bapa mice is related to interferences 

with the activity of DR receptors. 

The SCH-23,390 D1R antagonist reduced in both, bapa and wt mice , the sniff and 

rearing behaviors increasing the immobility time. However, an attenuation of sniff behavior 

was observed in bapa mice ( ~ 60%) after apomorphine administration relative to wt mice (~ 

90%), suggesting  a decreased activity of this receptor in bapa mice. Instead, the SCH-23,390 

was more efficient in blocking the immobility in bapa mice (~700%) than in wt mice (200%). 

Stereotyped sniff is an oral compulsive behavior related to increase in striatal DR1 and 

DR2(Delfs and Kelley, 1990) explaining the reduction of this behavior by the SCH-23,390 

antagonist.  
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Clozapine, a DR 4 dopaminergic antagonist, has antipsychotic action but no 

Parkinson-like motor side effects (Ledonne and Mercuri, 2017) and was used to identify if 

bapa mice motor dysfunction is related to D4 receptor. In this respect, this antagonists acts at 

the mesolimbic D4 receptors with low density in neostriatum (Seeman et al., 1993), reduced 

the hyperlocomotion in the open field (Ninan and Kulkarni, 1998) but not stereotypy induced 

by apomorphine (Rupniak et al., 1985). 

However, in the present study, clozapine blocked the apomorphine effects on rearing 

frequency but not on sniff behavior and in the immobility time.  Both bapa and wt mice 

showed similar profile. Thus, we suggest that differences on dopaminergic D4 receptors were 

not involved with the motor dysfunction of bapa mice.  

Since SCH-23,390 acts at neostriatal DAergic system (Presti et al., 2003)and clozapine 

mainly   at the mesolimbic DAergic system(Ledonne and Mercuri, 2017), we propose that the 

motor dysfunction observed in bapa mice could results, at least, to an increase in DR1 

dopaminergic receptor activity. However, the control of motor behavior involves not only 

Daergic receptors but also cholinergic and Gabaergic receptors (Ledonne and Mercuri, 2017) 

as well as interactions between  other central nervous areas (Rizzolatti and Luppino, 

2001)thus needing more studies about the bapa motor dysfunction.  
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 3.5 CONCLUSIONS 

1) Increased general activity observed daily during four days in the open field during four 

days, without habituation to the open field in bapa mice relative to wt mice; 

2) Exposure to a new object in the fifth day of observation in the open field induces an 

additional increases on locomotor activity in both, bapa and wt mice; 

3) Increased motor incoordination in a wooden beam in bapa mice relative to wt mice; 

4) No differences on anxiety-like behavior aversive learning observed in the elevated plus 

maze between bapa and wt mice; 

5) Increased the stereotyped sniffing after apomorphine administration in bapa mice relative t 

wt mice; 

6) The D1R antagonist reduced in both, bapa and wt mice the stereotyped behavior but an 

attenuation was observed in bapa mice, suggesting an involvement of D1 receptor with the 

motor dysfunction of bapa mice. 

7)  The DIR4 antagonist  blocked the apomorphine effects on rearing behavior but not on sniff 

and in the immobility time in both bapa and wt mice, suggesting that  the D4 receptor was not 

involved in the motor dysfunction of bapa mice.  
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  CONCLUSÃO 

1) Observou-se aumento da atividade geral em campo aberto em sessões diárias por 4 dias 

consecutivos, sem habituação á contingência ambiental nos camundongos bapa em relação 

aos wt;  

2) Verificou-se aumento da resposta a um objeto novo no quinto dia de exposição ao campo 

aberto em ambas linhagens de camundongos; 

 3) Os camundongos bapa mostram aumento da incoordenação motora em trave-elevada em 

relação aos camundongos wt; 

4) Não foram observadas diferenças entre as linhagens na ansiedade e aprendizado aversivo 

em labirinto em cruz elevado; 

5) Nos camundongos bapa a administração de apomorfina aumentou a duração de farejar e 

reduziu o tempo de imobilidade em relação aos camundongos wt;  

6) A administração dos antagonistas de receptores D1, SCH-23,390, reduziu nas duas 

linhagens de camundongos a duração de farejar, a frequência de levantar e na duração de 

imobilidade induzida pela apomorfina, porém foi observada atenuação dos efeitos no farejar 

nos camundongos bapa. 

7)  A administração de clozapina, um antagonista de receptores D4, bloqueou os efeitos da 

apomorfina no farejar mas não na duração de farejar e de imobilidade em ambas linhagens de 

camundongos.  

Conclui-se então que os receptores dopaminérgicos D1 estão envolvidos com a disfunção 

motora apresentada pelos camundongos bapa enquanto que os receptores D4 não estão 

envolvidos com esta disfunção.  
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3.7 FIGURE CAPTIONS 

 

Figure 1. General activity of bapa and wt mice observed in the open field for 4 days. A- 

locomotion frequency; B- rearing frequency; C- grooming time; D- immobility time. Two 

way ANOVA followed by Bonferroni's multiple comparisons test. *p< 0.05; ***p< 0.001 

relative to wt mice.  

 

 

Figure 2 Interaction of a new object (A,B,C and D), aversive wooden beam (F) and elevated 

plus maze behaviors(E,F and H) of bapa and wt mice. Two way ANOVA followed by 

Bonferroni's multiple comparisons test. *p< 0.05,  ** p< 0.01*** p< 0.001 relative to wt 

group. 

 

Figure 3.Stereotyped behavior induced by 0.6 mg/kg of apomorphine in bapa and wt mice. 

A- sniff time (s) in 10 and 20 min; B- total sniff time(s); C- rearing frequency in 10 and 20 

min; D- total rearing frequency; E- immobility time(s) in 10  and 20 min; F-  total immobility 

time(s). Two way ANOVA followed by Bonferroni's multiple comparisons test. *p< 0.05 , ** 

p< 0.01*** p< 0.001 relative to wt group. 

 

Figure 4.Stereotyped behavior of in bapa and wt mice pretreated with  SCH-23,390 (0.4 

mg/kg) or clozapine  (2.0 mg/kg ) antagonists 15 min before 0.6 mg/kg of apomorphine and 

observed for 20 min. A- sniff time (s) in 10 min; B- sniff time (s) in 20 min; C- total sniff 

time(s); D- rearing behavior in 10 min; E-rearing frequency in 10 min; F- rearing frequency in 

20 min; G- total rearing frequency; H- immobility time(s) in 10 min;  immobility time(s) in 20 

min; I- total immobility time(s). One way ANOVA followed by Tukey’s test. *p< 0.05 , ** 

p< 0.01*** p< 0.001 relative to wt group. 
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Figure 1. 

 

 

 

 
 

 

  



66 
 

Figure 2. 
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Figure 3.  
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Figure 4. 
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 ANEXO A 

Folha de Aprovação do Comitê de Ética no uso de Animais da UNIP (CEUA) 
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 ANEXO B 

Quadro 01. Receptores de neurotransmissores do Sistema Nervoso Central e suas funções.  

Neurotransmissor Receptores 
no SNC 

Localização na 
sinapse 

Agonistas e 
antagonistas 

Localização no 
cérebro-área 

predominante 

Função Uso terapêutico e 
especialidade 
farmacêutica 

 

Aminas e 

aminoácidos 

      

Aminas       

Acetilcolina M1 Pós-sináptico Agonistas: 

arecolina, 

pilocarpina, 

cevimelina, 

tazomelina, 

alvamelina, 

talsaclidina, 

xanomelina, 

milamelina,  

sabcomelina. 

Antagonista: 

pirenzepina, 

atropina*. 

Córtex, 

hipocampo e 

corpo estriado. 

Aprendizado e/ou 

memória. 

Papel na 

esquizofrenia 

Arecolina-melhora da memória. 

 M2 Pré-sináptico 

Autoreceptor 

Agonista: 

oxotremorina, 

cisdioxolana, 

 

Antagonista: 

atropina* 

Mesencéfalo, 

tálamo. 

Menor densidade: 

córtex, 

hipocampo e 

corpo estriado. 

Controlam a 

liberação de 

acetilcolina. 

Analgesia em 

colaboração com 

o receptor M4. 

- 

 M3  Agonista: carbacol, 

pilocarpina 

Antagonista: 

Tiotropium bromide 

Corpo estriado, 

hipotálamo. 

Controle do 

apetite. 

- 
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 M4 Pré-sinaptico 

Autoreceptores 

Agonistas: 

xanomeline.* 

pilocarpina* 

Antagonista: 

atropina* 

Maior densidade: 

corpo estriado 

 

Menor densidade: 

córtex e 

hipocampo 

Controlam a 

liberação de 

dopamina e 

modulam 

atividade motora. 

 

Esquizofrenia 

 M5  Agonista: 

pilocarpina* 

Antagonista: 

atropina* 

Corpo estriado e 

núcleo 

accumbens 

Facilita a 

liberação de 

dopamina. 

- 

 N neuronais Pós-sinápticos 

 

 

 

Heteroreceptores 

Agonista: 

pilocarpina* 

Antagonista: 

atropina* 

Pós-sinápticos 

 

 

 

Membrana 

neuronal de 

noradrenalina. 

Sistema 

dopaminérgico 

mesolímbico 

Núcleo de Rafe 

Processos de 

cognição e  dor 

bem como  no 

controle da 

dopamina 

estriatal. 

 

Aumento da 

vigília, do alerta e 

atividade 

exploratória. 

Liberam 

dopamina. 

Reduzem a 

liberação de 5-HT 

levando a 

alucinações e 

alterações do 

humor. 

. 

 

 

 

 

Histamina H1 Pós-sinápticos Agonista: 2-

metilhistamina,  2- 

tiazoliletilamina. 

Antagonista: 

antihistamínicos 

clássicos, 

Corpo celular no 

hipotálamo 

Vias para 

formação 

reticular 

Centro do vômito 

Sono-vigília 

Controle 

alimentar 

Memória 

Vômito 

Anti-histamínicos clássicos 

como indutores de sono. 

Antiemético-dimenidrato 
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mepiramina no hipotálamo 

Centro de 

controle da fome 

no hipotálamo 

 H2 Pós-sinápticos Agonista: 

Antagonista: 

ranetidina a, 

cimetidina a, 

zolantidina. 

Hipotálamo Antinocicepção 

opióide 

Controle da 

prolactina 

- 

 H3 Pré-sináptico 

Autoreceptor 

 

 

 

Heteroreceptor 

 

Agonista: 

imetita,imepip,  

alfa-metilhistamina 

Antagonista: 

tioperamida, 

clobenpropit. 

Terminações de 

sinapses 

histaminérgicas. 

 

 

Vias 

serotoninérgicas, 

dopaminérgicas, 

Gabaérgicas, 

colinérgicas e 

noradrenérgicas. 

Controle da 

obesidade, 

Modulação da 

atividade motora, 

Desordens 

mentais, Déficits 

de memória. 

Distúrbios do 

sono, epilepsia. 

Novos antipsicóticos- 

       

Monominas       

Noradrenalina Alfa 1 Pós-sináptico Agonista: fenilefrina 

 

Antagonista: 

prazosina, 

Córtex cerebral, 

hipocampo, 

Locus coeruleus, 

área septal 

medial, área pré-

optica medial. 

Consolidação da 

memória, 

Vigília, estresse 

 

 Alfa 2 Pré-sinaptico Agonista: xilazina, 

clonidina. 

 

Antagonista: 

ioimbina 

Gânglios da base  Pré-anestesia e tranquilização e 

relaxamento muscular- xilazina 

 Beta1 Pós-sináptico Agonista: 

isoprenalina* 

Gânglios da base, 

Locus coeruleus, 

Consolidação da 

memória 

 



73 
 

 

Antagonista: 

propranolol*, 

área septal 

medial, área pré-

optica medial. 

Vigília 

 Beta2 Pós-sináptico Agonista: 

clembuterol, 

salbutamol 

 

Antagonista: 

propranolol*, 

Córtex 

associativo, 

Locus coeruleus, 

área septal 

medial, área pré-

optica medial 

Vigília Ansiedade 

 Beta 3 Pré-sináptico Agonista; 

isoprenalina,* 

Antagonista: SR 

59230A 

Córtex 

associativo 

Consolidação da 

memória 

 

Dopamina Tipo D1(D1 

e D5) 

 Agonista: SCH-

23390, 

apomorfina*, 

dihydrexidina. 

Antagonista: 

haloperidol* 

Núcleo caudado, 

putamen, núcleo 

accumbens, 

tubérculo 

olfatório e córtex 

cerebral. 

Função motora 

associado aos 

receptores D2 e 

D3, Memória 

 

 TIPO D2 

(D2, D3 e 

D4) 

Pré e pós-

sináptico 

Agonista: 

apomorfina* 

 

Antagonistas: 

haloperidol*, 

droperidol. 

Clozapina-receptor 

D4 

Núcleo caudado, 

putamen, núcleo 

accumbens, 

tubérculo 

olfatório e córtex 

cerebral. 

Inibição da 

liberação de 

prolactina na 

hipófise e causam 

o vômito. Afetam 

ainda  a função 

motora e o 

comportamento 

emocional, 

psicoses). 

 

Antipsicóticos, contenção de 

animais, pré-medicação 

anestésica. 

Butirofenonas e benazamidas. 

Serotonina 5-HT1A Autoreceptor 

 

Pós-sináptico 

  Depressão 

 

Redução da 

ansiedade 

 

 5-HT1B Auto Agonista: 1-(3-  Enxaqueca  
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Heteroreceptor clorofenil) 

piperazina (mCPP). 

 

 Família 5-

HT2 

     

 5-HT2A Pós-sináptico 

 

Agonista: 2,5- 

dimetoxi-4-

iodoanfetamina 

(DOI), 1-(3-

clorofenil) 

piperazina 

(mCPP)*. 

Antagonista:  

clozapina, 

ketanserina, 

mianserina 

 

 Comportamento 

alimentar, efeito 

ansiolítico e 

esquizofrenia 

 

 

 5-HT2B 

 

Pré-sináptico. 

 

Antagonista 

ketanserina, 

mianserina 

 No sistema 

nervoso central 

incluem a 

sensibilização 

neuronal aos 

estímulos táteis e 

mediação de 

alguns dos efeitos 

de alucinógenos. 

Enxaqueca. 

 

 

 5HT2 C Pós-sináptico e 

heteroreceptor. 

Agonista: : 2,5- 

dimetoxi-4-

iodoanfetamina 

(DOI, . 

1-(3-clorofenil) 

piperazina 

(mCPP). 

 

 

Ansiedade,  

Secreção do 

líquido 

cefalorraquidiano 

no plexo coróide. 
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Antagonista : 

ketanserina, 

mianserina. 

 

 5-HT3 -  Expresso em todo 

sistema nervoso 

central 

Antiemético em 

quimioterapia, 

ansiolítico. 

 

 5-HT6 -  Expresso em todo 

sistema nervoso 

central 

Cognição, 

esquizofrenia, 

obesidade, 

ansiedade. 

 

 5-HT7 -  Expresso em todo 

sistema nervoso 

central 

Mecanismos de 

sono, autismo. 

 

Aminoácidos       

Glutamato       

GABA GABA A 

 

 

Pós-sináptico, 

interneurônios. 

Agonistas:  

barbitúricos, etanol, 

benzodiazepínicos, 

muscimol, 

gaboxadol. 

THIP((4,5,6,7-

tetrahydroisoxazolo 

[5,4-c]pyridin-3-ol) 

 

 

 

Antagonistas: 

picrotoxina, 

bicuculina, 

cicutoxina e 

oenantotoxina, 

flumazenil. 

 

Expresso em todo 

SNC. Apresenta 

vários subtipos 

com ações 

específicas. 

Pequena 

população no 

cerebelo 

envolvida na 

redução do sono e 

ação de 

neuroesteróides. 

Anestesia, 

ansiedade, 

pânico, epilepsia, 

sedação 

Anestésicos: pentobarbital, 

halotano, midazolam,  

etomidato, enflurano, 

propofol,quetamina, zolpidem. 

Anticonvulsivantes: 

Fenobarbital, primidona, 

carbamazepina, oxcarbazepina, 

progabide, gabapentina, 

lamotrigina, topiramato, 

vigabatrina, felbamato, 

levitiracetam. 

 

Etanol 

Benzodiazepínicos:Diazepam, 

clonazepam, clorazepato. 

Flumazenil 
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 GABA B 

 

Subtipos: 

GABA B1 

GABA B2 

Pós-sináptico Agonistas: Gaba, 

baclofeno, gama-

hidroxibutirato 

(GHB). 

 

Antagonistas: 

Saclofeno 

Faclofeno, 

feniletinamina. 

 

Expresso em todo 

SNC. 

Dor, ações do 

etanol. 

Desenvolvimento 

dos organismos. 

Baclofeno – relaxante 

muscular. 

 GABA C  Agonistas: Ácido 

(Z)-4-Amino-2-

butenóico, 

 

Antagonistas: THIP 

TPMPA  (ácido 

(1,2,5,6-

Tetrahidropiridin -4-

il) metilfosfínico 

Expresso em todo 

SNC, em 

particular em 

áreas do 

neocortex. 

Visão,  sono  e 

distúrbios 

cognitivos. 

THIP-utilizado para impedir o 

desenvolvimento da miopia. 

Glicina Receptores 

com várias 

subunidades 

que 

determinam 

sua ação 

- Agonistas: glycine, 

β- alanina, taurine. 

Antagonista: 

estricnina 

Medula espinhal, Controle motor de 

músculos 

antagônicos 

Estricnina – estimulante 

medular em desuso. 

Peptídeos opióides Receptor µ 

 

 

 Agonista 

endógenob- β- 

Endorphin. 

Agonistas e 

antagonistas-Vide 

Cap. 15 

Córtex límbico 

sistema, e tronco 

cerebral 

principalmente 

amígdala. 

Analgesia supra-

espinhal, 

Dependência ao 

etanol, 

aprendizado e/ou 

memória, 

mecanismos de 

recompensa. 

Hipnoanalgésicos: Alcalóide do 

ópio, Compostos sintéticos. 

Outros: Antagonistas de 

narcóticos, Compostos de ação 

mista. 

Vide Cap. 15 

 Receptor δ  Agonista 

endógenob- met- e 

Córtex límbico 

sistema, e tronco 

Juntamente com 

os receptores µ 

Vide Cap. 15 
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leu-encefalina. 

Agonistas e  

antagonistas 

Vide Cap. 15 

cerebral 

principalmente 

trato olfatório, 

neocortex, 

regiões da 

amígdala e 

estriatum. 

ligados à 

dependência ao 

etanol, analgesia 

medular 

 Receptor κ  Agonista endógenob 

– dinorfinas. 

Agonista e 

antagonistas-Vide 

Cap. 15 

Córtex límbico 

sistema, e tronco 

cerebral 

principalmente 

claustro  e córtex 

piriforme,  

tubérculo 

olfatório,  

striatum (caudado 

e nucleus 

accumbens), área 

pré-óptica,  

hipotálamo e 

hipófise. 

Estresse, 

depressão, 

sedação, disforia, 

dor visceral. 

Vide Cap. 15 

* não seletivo; a não atravessa a barreira hematoencefálica; b – maior afinidade. 

 

 


