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RESUMO 

 
 
O laser de alta potência tem sido utilizado em dentes humanos com a finalidade de 

remoção de cárie e adequação da superfície, criando condições promissoras para os 

procedimentos adesivos e restauradores. O objetivo do presente  estudo  foi  avaliar 

se a irradiação da dentina com laser de Ti:Safira, no regime de femtosegundos (fs), 

previamente aos procedimentos adesivos, poderá contribuir para o aumento da 

resistência adesiva à microtração. Para os procedimentos adesivos, a porção oclusal 

dos dentes foi removida e a smear layer, padronizada. Foram utilizados 20 dentes 

humanos (3o molar) divididos em 4 grupos: GD1- Controle: procedimentos adesivos 

com adesivo etch-rinse (Scotchbond Multi-Purpose - SBMP); nos demais grupos a 

dentina foi irradiada previamente aos procedimentos adesivos, sendo: GD2- Laser (2 

J/cm2); GD3- Laser (4 J/cm2); GD4- Laser (8 J/cm2). Os dentes foram condicionados 

com ácido fosfórico 37%, aplicado o sistema adesivo (SBMP) e restaurados com 

resina composta (Z350 XT). Após isso, foram imersos em água destilada e mantidos 

em estufa a 37o C por 24h. Em seguida, foram seccionados com cortes 

perpendiculares entre si, produzindo palitos com 0,7 (± 0,2) mm2 e submetidos ao 

ensaio de microtração. Os grupos GD2 (2 J/cm2) e GD3 (4 J/cm2) apresentaram 

resultados semelhantes entre si e em relação ao Controle. O grupo GD4 (8 J/cm2) 

apresentou menores valores  de resistência adesiva em relação ao Controle (p<0,05) 

e aos grupos GD2 e GD3 (p<0,01). Sugere-se que o aumento da densidade de 

energia, a partir de um limiar de ablação, pode resultar em redução da resistência 

adesiva e da rugosidade superficial, provavelmente relacionadas com o shielding 

effect. Por outro lado, as menores  densidades de energia não afetaram a 

adesividade, mantendo valores semelhantes ao controle. 

 
Palavras-chave: adesividade, dentina, Laser Ti:Safira, femtossegundos, 

resistência adesiva à microtração. 



 

ABSTRACT 

 
The high power laser has been used in human teeth for the purpose of  caries  

removal and surface  adequacy, creating promising conditions for adhesive and 

restorative procedures. The objective of the present  study was to evaluate  whether  

the irradiation of the dentin with Ti:  Sapphire  laser, in the  regime of femtoseconds 

(fs), before the adhesive procedures, could contribute to the increase of the adhesive 

resistance to the Bond Strength. For the adhesive procedures, the occlusal portion 

of the teeth was removed and the smear layer  was  standardized.  Twenty  human  

teeth (3rd molar)  divided into  4 groups were  used: GD1- Control:  adhesive 

procedures with etch-rinse adhesive (Scotchbond Multi-Purpose  - SBMP);  in  the  

other groups the dentin was irradiated before the adhesive procedures, being: GD2- 

Laser (2 J / cm²); GD3-Laser (4 J / cm²); GD4-Laser (8 J / cm²). The teeth were 

conditioned with 37% phosphoric acid, applied adhesive system  (SBMP) and  

restored with composite resin (Z350 XT). After that, they were immersed in distilled 

water and kept in an oven at 37o C for 24h. Afterwards, they were sectioned with 

perpendicular cuts between them, producing sticks with 0.7 (± 0.2)  mm²   and 

submitted to the microtraction test. The GD2 (2 J / cm²) and GD3 (4 J / cm²) groups 

showed similar results to each other and to Control. The GD4 group (8 J / cm²) had 

lower values of adhesive strength compared to Control (p <0.05) and GD2 and GD3 

groups (p <0.01). It is suggested that the increase in energy density, from an ablation 

threshold, may result in a reduction of the adhesive strength and surface roughness, 

probably related to the shielding effect. On the other hand, the lower energy densities 

did not affect the adhesiveness, maintaining values similar to the control. 

 
Keywords: Adhesion, dentin, Laser Ti: Sapphire, femtosseconds,  adhesive  

resistance to Bond Strength. 
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1. INTRODUÇÃO 

 
 

A adesividade dos materiais restauradores aos tecidos duros dentais ainda é 

muito discutida na literatura, pois a interface adesiva é um ponto vulnerável da 

restauração e, por isso, diversos autores procuram validar suas pesquisas com 

etapas laboratoriais e clínicas. 

O procedimento restaurador envolve a substituição do tecido dental por 

materiais resinosos, estabelecido pela formação da camada híbrida e interações 

químicas (1,2) podendo influenciar a qualidade e a durabilidade da restauração (3,4) 

Pesquisas com novos materiais restauradores, técnicas de aplicação e diferentes 

estratégias adesivas para tratamento de superfície têm apresentado perspectivas de 

melhora na adesividade.(5) Apesar disso, independentemente da estratégia adesiva 

adotada, a interface está exposta a diversos fatores que podem favorecer sua 

degradação precoce, como a fadiga mecânica que pode resultar na formação de 

gaps e tensão decorrente da contração de polimerização pós-gel, podendo causar 

falência da restauração. (6) Outros fatores como a hidrólise da matriz resinosa, ação 

das metaloproteinases sobre o colágeno exposto ou contaminação por bactérias 

oriundas da infiltração marginal podem contribuir para a falha da restauração. (7) 

Ensaios mecânicos são utilizados para avaliar a eficiência da resistência de 

união entre a estrutura dental e os diferentes materiais restauradores, entre eles o 

ensaio de microtração. A vantagem é que, a partir de um único dente, vários corpos 

de prova são obtidos de diferentes regiões da superfície dentinária, com variações 

inerentes da anatomia dental, fornecendo resultados da resistência de união. (8–14) 

Estudos com lasers Nd:YAG, (15,16) Er:YAG, (17,18) Er,Cr:YSGG (15,19) e 

Nd:YVO4 (20) associado a técnicas adesivas vem se tornando uma alternativa para o 

tratamento de superfícies duras dentais precedendo o tratamento adesivo, 

descrevendo sua interação com os tecidos duros dentais e a morfologia do tecido 

irradiado. 

A utilização de laser de alta potência de pulsos ultracurtos no regime de 

femtossegundos, precedendo os procedimentos adesivos, vem se consolidando 

como um tratamento promissor. O laser de Ti:Safira, demonstrou ser eficiente e com 

menor geração de calor (3,21,22). A formação de plasma e do pouco aquecimento 

do tecido induzidos pela absorção de luz são os principais fenômenos considerados 



12 
 

deste mecanismo de ablação. (23) A ablação tem se mostrado menos invasiva e 

com maior comodidade por não produzir vibração e o desconforto de ruídos, ao 

contrário dos instrumentos rotatórios. Além disso, é efetiva com ausência de 

carbonização e microfissuras, pois a temperatura da câmara pulpar permaneceu 

abaixo de 5,5°C. (3,20,24) A precisão e seletividade da remoção tecidual trazem 

vantagens, pois ocorre a níveis micrométrico e/ou nanométrico. (21,24–27) Apesar 

das vantagens, o alto custo do sistema ainda é discutível. (8,18,28,29) 

Diante disso, o objetivo do presente estudo foi avaliar se a irradiação da 

dentina com laser de Ti:Safira, no regime de femtosegundos, previamente aos 

procedimentos adesivos, poderá contribuir para o aumento da resistência adesiva à 

microtração. 
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3. CONCLUSÃO GERAL 

 
 

Sugere-se que o aumento da densidade de energia, a partir de um limiar de 

ablação, pode resultar em redução da resistência adesiva e da rugosidade 

superficial, provavelmente relacionadas com o shielding effect. Por outro lado, as 

menores densidades de energia não afetaram a adesividade, mantendo valores 

semelhantes ao controle. 
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ANEXOS 

 
 

Parecer Consubstanciado do CEP – UNIP. 
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Tabelas: 
 

Material Composição, lote e validade Modo de Aplicação 

 

SBMP 
Scotchbond 

Multi- 
Purpose- 

(3M ESPE) 

Ácido: gel de ácido 
fosfórico a 35%. 

Primer: Solução aquosa 
de HEMA, água, 
copolímeros de ácido 
acrílico e itacônico. 

Lote e Validade: 

XXXX 

Adesivo: HEMA 
(30‑ 40 wt%)Adesivo: 
Bis-GMA; HEMA; 
fotoiniciadores. 

 

Lote e Validade: 

N 571827 (03/2017) 

Aplicar o ácido fosfórico sobre a dentina e 
esmalte, aguardar 15 s, lavar por 15 s e secar 
por 5 s, sem dessecar. 

Aplicar o primer SBMP sobre toda a 
superfície condicionada e secar suavemente 
durante 5 s. 

Aplicar o adesivo SBMP sobre toda a 
superfície, formando uma camada uniforme 
sem acumulação. 

Fotopolimerizar durante 10 s. 

Resina 
composta 
Z350 XT 

Cor: A2B 

(3M ESPE) 

Bis-GMA, UDMA, TEGDMA e Bis-EMA, sílica 
tratada com silano, sílica – óxido de zircônia tratado 
com silano, BHT e pigmentos. 

Lote e Validade: N 474003 (10/2018) 

Aplicar a resina composta sobre a 
cavidade/superfície em incrementos de no 
máximo 2mm e fotopolimerizar por 20s. 

Tabela 1: Primer/Adesivo: HEMA: 2-hidroxietilmetacrilato; Bis-GMA: Bisfenol A diglicidil éter 
dimetacrilato; Filtek Z350XT: UDMA (urethane dimethacrylate); TEGDMA: dimetacrilato de trietileno 
glicol; Bis-EMA: Bisfenol A polietileno glicol; BHT: 2,6-di-terc-butil-p-cresol. 

 
 

 
  µTBS - Tipos de falhas (%)  

Grupos Adesiva Resina Dentina Mista 

Controle 67,40 15,21 4,35 13,04 

2 J/cm
2
 82,29 8,33 5,21 4,17 

4 J/cm
2
 86,11 6,94 4,17 2,78 

8 J/cm
2
 93,3 1,7 3,3 1,7 

Tabela 2: Classificação dos tipos de falhas ocorridas no ensaio de µTBS. 
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Gráficos: 

Fig. 2: GD1- Controle= 35,04 (± 5,11) MPa; GD2- 2 J/cm
2
= 34,89 (± 3,71) MPa; GD3- 4 J/cm

2
= 37,47 

(± 5,75) MPa; GD4- 8 J/cm
2
= 28,08 (± 4,05) MPa. 
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Figuras: 
 

 

Fig. 2a-e: Eletromicrografias das interfaces de união. GD1: Controle GD2: 2 J/cm
2
 GD3: 4 J/cm

2
 e 

GD4: 8 J/cm
2
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Fig. 2a-b: GD1- Controle: Rugosidade superficial= 0.33792 µm; Eletromicrografias da superfície; Fig. 3a-b: 
GD2- Laser (2 J/cm

2
): Rugosidade superficial= 3.2778 µm; Eletromicrografias da superfície;  Fig.  4a-b: 

GD3- Laser (4 J/cm
2
): Rugosidade superficial= 4.3742 µm; Eletromicrografias da superfície; Fig. 5a-b: 

GD4- Laser (8 J/cm
2
): Rugosidade superficial 2.9279 µm; Eletromicrografias da superfície. 


