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ABSTRACT 
 

Poultry production has become increasingly complex due to environmental variability, 

high-density farming, and sustainability demands, creating decision environments 

marked by uncertainty, contradiction, and fragmented or domain-dependent 

information. Conventional decision support systems (DSS) often fail to ensure 

consistency and interpretability under such conditions. This research develops and 

evaluates an integrative method that combines Paraconsistent Annotated Evidential 

Logic Eτ (Logic Eτ), Retrieval-Augmented Generation (RAG), and Large Language 

Models (LLMs) agents to enable resilient and explainable reasoning for decision-

making in poultry farming. The research followed a cumulative three-stage design: (i) 

a systematic literature review identifying conceptual and technological gaps; (ii) 

controlled experiments assessing the influence of RAG on LLM performance; and (iii) 

the modeling, implementation, and validation of a conversational DSS integrating 

Logic Eτ-based inference with a state-of-the-art large language model. Evaluation 

based on semantic similarity, contextual relevance, and logical-evidential consistency 

confirmed that the integrated architecture remained robust even under conflicting or 

incomplete evidence. The study establishes Logic Eτ as a computational foundation 

for trustworthy and resilient AI-based DSS, operationalizing it within a modern AI 

framework that enhances explainability and governance in agricultural production 

processes, particularly poultry farming. 

 

Keywords: Paraconsistent Annotated Evidential Logic Eτ; Decision Support Systems; 

Retrieval-Augmented Generation; Large Language Models; Poultry Farming; 

Explainable Artificial Intelligence. 

  



RESUMO 

 

A produção avícola tornou-se progressivamente mais complexa devido à variabilidade 

ambiental, à elevada densidade produtiva e às exigências de sustentabilidade, 

configurando ambientes decisórios marcados por incerteza, contradição e 

informações fragmentadas ou dependentes de domínio. Os sistemas de suporte à 

decisão (SSD) convencionais frequentemente não conseguem garantir consistência 

e interpretabilidade nessas condições. Esta pesquisa desenvolve e avalia um método 

integrativo que combina a Lógica Paraconsistente Anotada Evidencial Eτ (Lógica Eτ), 

a Recuperação Aumentada (RAG) e agentes baseados em Modelos de Linguagem 

de Grande Escala (LLMs), com o objetivo de possibilitar um raciocínio resiliente e 

explicável aplicado à tomada de decisão na avicultura. A pesquisa foi conduzida em 

três etapas cumulativas: (i) revisão sistemática da literatura para identificação de 

lacunas conceituais e tecnológicas; (ii) experimentos controlados para avaliar a 

influência da RAG no desempenho dos LLMs; e (iii) modelagem, implementação e 

validação de um SSD conversacional que integra a inferência lógico-evidencial da 

Lógica Eτ a um modelo de linguagem de última geração. A avaliação, baseada em 

métricas de similaridade semântica, relevância contextual e consistência lógico-

evidencial, confirmou que a arquitetura integrada manteve desempenho robusto 

mesmo sob evidências conflitantes ou incompletas. O estudo consolida a Lógica Eτ 

como base computacional para SSD de inteligência artificial confiáveis e resilientes, 

operacionalizando-a em um arcabouço contemporâneo de IA que aprimora a 

explicabilidade e a governança em processos produtivos agrícolas, com ênfase na 

avicultura. 

 

Palavras-chave: Lógica Paraconsistente Anotada Evidencial Eτ; Sistemas de 

Suporte à Decisão; Recuperação Aumentada; Modelos de Linguagem de Grande 

Escala; Avicultura; Inteligência Artificial Explicável.: 

  



UTILITY 

 

This research investigates the integration of Artificial Intelligence and 

Paraconsistent Logic in Decision Support Systems designed to address complex 

decision-making challenges in intensive poultry farming environments characterized 

by incomplete, ambiguous, and contradictory data. 

Its contributions are expressed in three complementary dimensions: scientific, 

productive, and social. 

In the scientific domain, it expands knowledge on reasoning and inference in 

advanced artificial intelligence by applying non-classical logics to augmented 

generative models for the formal treatment of uncertainty and contradiction, 

consolidating this integration as an architecture for knowledge-based decision support 

systems. 

In the agricultural sector, particularly poultry farming, it proposes an adaptive 

approach embodied in a DSS designed for producers, capable of supporting the 

optimization of production processes with greater quality, predictability, and 

operational safety. 

In the social dimension, the study reinforces sustainable practices, promotes 

animal welfare, and supports regulatory compliance, generating direct impacts on food 

security and sectoral governance.  

These advances align with the global goals established by the United Nations 

Sustainable Development Goals (UN SDGs) (United Nations General Assembly, 

2015). 

This research employs advanced artificial intelligence to address complex 

infrastructure challenges and foster technological modernization and operational 

resilience, contributing to SDG 9 – Industry, Innovation, and Infrastructure. 

It enhances productivity and food security through environmental control and 

precise husbandry management, supporting SDG 2 – Zero Hunger and Sustainable 

Agriculture. 

For SDG 13 – Climate Action, it provides mechanisms for rapid response to 

unexpected events and for mitigating adverse environmental impacts. 

By promoting efficiency and reducing waste in resource utilization, it supports 

SDG 12 – Responsible Consumption and Production. 

  



Furthermore, it supports SDG 15 – Life on Land, by ensuring animal welfare 

conditions compatible with the physiological needs of poultry. 

Finally, by enhancing transparency and accountability in production 

management, promoting regulatory compliance and strengthening governance 

standards, the research contributes to SDG 16 – Peace, Justice, and Strong 

Institutions. 

By articulating scientific advances, practical applications for the production 

sector, and socio-environmental responsibility, this study transcends a purely 

technological scope and contributes to consolidating a poultry production model that 

integrates innovation, efficiency, and a strong commitment to sustainability. 
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CHAPTER I 

1 INTRODUCTORY CONSIDERATIONS 
 

This chapter provides a contextualization of the research, presenting the study’s 

context and its interactions with various fields of knowledge. It also includes the 

research rationale, objectives, methodology, and the structure of the thesis. 

1.1 Introduction 
 

Global animal protein production has consistently grown over the past decades 

(Figure 1), driven by the demographic and economic growth, urbanization, and 

changes in dietary habits (Figure 2). It is estimated that this demand may rise by up to 

70% by 2050, with poultry meat becoming the main source of animal protein 

consumed worldwide (FAO, 2022; Mottet & Tempio, 2017; Berckmans, 2017). 

 

Figure 1. Global Meat Production, Last 30 Years (million tons) 

 

Source: Prepared by the author, based on FAOSTAT (2024).  
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Figure 2. Global Per Capita daily Protein Intake, last 30 years (in g)  

 

Source: Prepared by the author, based on FAOSTAT (2024). 

This growth phenomenon is particularly significant in developing regions such as 

Asia and South America (Figure 3), where the increase in per capita income has 

favored more frequent consumption of animal-based products, especially poultry 

(FAO, 2022; Mottet & Tempio, 2017; Berckmans 2009, 2017) 

 

Figure 3. Global Per Capita Daily Meat Availability for Consumption (g/day), 2022 

 

Source: Prepared by the author, based on FAOSTAT (2024).  
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This accelerated growth in poultry production has led to significant structural 

transformations in the production chain, with the consolidation of large-scale intensive 

systems characterized by high density and increasingly shorter production cycles 

(FAO, 2022; ABPA, 2024; Gržinić et al., 2023). Currently, about 92% of global poultry 

production takes place in intensive systems (FAO, 2022; Mottet & Tempio, 2017; 

Berckmans, 2009; Berckmans, 2017). Brazil exemplifies this process, being the 

world’s largest exporter and the second-largest producer, with more than 50,000 

integrated producers operating under strict sanitary and quality standards (ABPA, 

2024). This model has enabled Brazilian production to grow by more than 1087% over 

the past four decades, while exports have increased by more than 3040% (ABPA, 

2024). 

The increase in production scale, combined with the high density of flocks, poses 

significant challenges to management, animal welfare, health, and environmental 

sustainability. Inadequately controlled environments can compromise zootechnical 

performance, food safety, and regulatory compliance (Curi et al., 2017; Hafez & Attia, 

2020). Variables such as temperature, humidity, air velocity, gas concentration, 

feeding conditions, management practices, and disease incidence interact 

dynamically and interdependently, directly affecting bird health, welfare, and 

productivity (Gržinić et al., 2023; Pereira & Nääs, 2008; Martinez et al., 2021; Qi et al., 

2023). 

To address these challenges, initiatives have emerged that integrate digital 

technologies into the monitoring and management of animal production systems, 

including poultry farming. From this perspective, intelligent systems have been applied 

to detection and monitoring layers (IoT sensors, computer vision, and acoustic 

analysis), generating large volumes of environmental and behavioral data (Astill et al., 

2020; Zheng et al., 2021; Dewanto, Munadi & Tauviqirrahman, 2019; Lashari et al., 

2018). Recent advances also demonstrate the use of convolutional neural networks, 

deep reinforcement learning, and support vector machines to identify behaviors, 

stress, and clinical signs in birds (Halachmi et al., 2019; Raikov & Abrosimov, 2022; 

Ojo et al., 2022). 

Despite these advances, available solutions remain fragmented at the analysis 

and decision-support stages. Specialized modules (such as vision, acoustics, and 

climate) operate as technological silos, with low interoperability, limited incorporation 

of contextual knowledge (flock history, zootechnical objectives, seasonality, 

operational constraints), and restricted capacity to integrate information from 



 

  

17 

heterogeneous sources. Moreover, the complexity of decision-making in intensive 

poultry farming involves multiple decision domains, extending beyond environmental 

control to encompass nutrition, health, welfare, and management, across operational, 

tactical, and strategic levels (Zhai et al., 2020; Rossi, Caffi & Salinari, 2012). Factors 

such as climate, market dynamics, and animal behavior make the decision-making 

process uncertain and, in many cases, contradictory (Hamsa & Bellundagi, 2017; 

Berckmans, 2009; Cheng, McCarl & Fei, 2022). 

This fragmentation reflects a structural challenge already recognized in the field 

of decision science: the dissociation between predictive modeling and the decision-

making process itself. Recent studies have highlighted the need to integrate symbolic 

reasoning, contextual inference, and decision-oriented learning, consolidating a 

“decision-focused” approach, in which the value of a model is assessed not only by its 

predictive accuracy but by the quality of the decisions it supports (Mandi et al., 2023). 

Consequently, the recommendations generated by these systems tend to be 

locally effective but systemically disjointed, resulting in latency between detection and 

action and difficulty in prioritizing trade-offs when signals are ambiguous. The 

limitations imposed by this fragmentation become even more severe in the frequent 

presence of incomplete information (sensor failures, misaligned time windows) or 

contradictory data (divergent readings between sources, conflicts between model 

outputs and field observations), creating a critical point for decision-making (Gržinić et 

al., 2023; Hafez & Attia, 2020). 

Specialized support constitutes the main resource for integrating information 

from different decision domains within the production system. Technical consultants 

play a relevant role in interpreting heterogeneous, and often, unprecise and 

incomplete data and formulating practical recommendations, acting as mediators 

between technological monitoring systems and decision-making in operations. 

However, this type of support presents limitations that compromise its 

effectiveness. First, it often relies on retrospective analyses based on historical data, 

leading to reactive responses with limited predictive value in dynamic environments 

(Lashari et al., 2018; Halachmi et al., 2019; Raikov & Abrosimov, 2022; Ojo et al., 

2022). Second, it involves high costs, which restrict accessibility for small and medium-

sized producers. In addition, it depends heavily on individualized expertise, which 

introduces variation in the quality of recommendations and limits the scalability of the 

model. Considering the intensive and complex nature of production systems, this 
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approach proves insufficient to ensure agility, standardization, and resilience in real-

time decision-making. 

In this context, there is a growing need to refine the Decision Support Systems 

(DSS) currently in use so that they can integrate different sources of information, 

including environmental, zootechnical, and operational data, as well as continuous 

data generated by monitoring systems, into advanced analytical models capable of 

producing reliable and actionable recommendations (Zhai et al., 2020; Curi et al., 

2017; Astill et al., 2020; Zheng et al., 2021; Liakos et al., 2018; Brugler et al., 2024). 

To address the demands of intensive production, such systems must not only 

operate in a way that provides timely responses but also maintain consistent 

performance in scenarios characterized by uncertainty, contradiction, and 

informational gaps, while demonstrating adaptability to different production conditions. 

This requirement aligns with the contemporary movement toward the unification of 

learning and decision-making, which seeks to replace the historical separation 

between predictive models and decision mechanisms with integrated structures of 

optimization and contextual reasoning (Mandi et al., 2023). 

Thus, the research problem guiding this study seeks to investigate how Decision 

Support Systems can be developed to integrate heterogeneous information and 

maintaining consistency even in the presence of uncertainty and contradiction, thereby 

overcoming the limitations of the solutions currently available in intensive poultry 

farming. 

In this context, the present research adopts as its theoretical and methodological 

framework the integration of Paraconsistent Annotated Evidential Logic Eτ (Logic Eτ), 

Large Language Models (LLMs), and Retrieval-Augmented Generation (RAG). Logic 

Eτ provides a quantitative formalism capable of representing degrees of favorable and 

unfavorable evidence while preserving the coherence of reasoning even under 

conditions of contradiction or incompleteness (Abe, Akama & Nakamatsu, 2015). 

LLMs, in turn, expand the capacity for knowledge representation and processing in 

natural language, enabling the extraction and organization of information from 

heterogeneous textual sources such as operational records, technical protocols, and 

human interactions (Brown et al., 2020). RAG complements this structure by ensuring 

the dynamic incorporation of updated contextual and factual evidence during the 

inferential process (Lewis et al., 2021; Li et al., 2022). From this integration emerges 

a theoretical and operational framework supported by three complementary 

dimensions, logical-evidential inference, contextual processing, and semantic 
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interpretation, which together enable consistent, interpretable, and adaptable 

decision-making under conditions of uncertainty and contradiction (Mandi et al., 2024).  

 

1.2 Justification 
 

The advancement of Decision Support Systems (DSS) in animal production, 

particularly in poultry farming, has been strongly driven by automation technologies, 

statistical modeling, and machine learning. However, these models remain anchored 

in paradigms of data consistency and completeness, which contrast with the realities 

of actual production environments. In intensive poultry systems, information is often 

uncertain, contradictory, and context-dependent, challenging traditional approaches 

to modeling and inference. 

In this scenario, the present research is justified by proposing an innovative 

methodological approach aimed at the convergence of logical-evidential inference, 

contextual processing, and semantic interpretation through the integration of Logic Eτ 

and LLMs with RAG, with the purpose of overcoming current challenges related to 

decision-making in poultry production. This integration is not merely technical but also 

conceptual: it proposes a new chain of computational reasoning grounded in logical-

evidential, contextual, and semantic integration, representing a relevant contribution 

to the field of artificial intelligence applied to decision science and, more broadly, to 

research on intelligent systems capable of operating under uncertainty and 

contradiction. With this proposal, the study contributes to the development of 

explainable, scalable, and adaptable systems aligned with the demands for efficiency 

and sustainability in modern animal production. 

From an applied perspective, the research is also justified by addressing a 

concrete need in the poultry sector, where decision-making processes depend on 

fragmented and often inconsistent data. The development of DSS capable of 

processing and interpreting contradictory information offers potential gains in agility, 

standardization, and reliability, reducing reliance on human consultancy and 

expanding access to operational intelligence.  

Beyond its technical and methodological relevance, the study is also justified 

from a social and institutional standpoint, as it aligns with the Sustainable 

Development Goals (SDGs) of the 2030 Agenda, contributing to the technological 

modernization and operational resilience of production systems, promoting efficiency 

and food security through process optimization, and strengthening transparency, 
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traceability, and accountability in the use of intelligent technologies applied to poultry 

production. 

Finally, the research is further justified by its scientific and institutional 

pertinence. Embedded within the research line “Quantitative Methods in Production 

Engineering” at Universidade Paulista (UNIP), it contributes to advancing logical-

evidential modeling as a decision-support tool for complex and uncertain contexts.  

 

1.3 Objectives 
 

1.3.1 General Objective 

 

The central objective of this master’s dissertation is to design the architecture, 

develop, and evaluate a knowledge-based Decision Support System for intensive 

poultry farming, capable of supporting resilient decision-making processes under 

conditions of uncertainty and informational contradiction. 

 

1.3.2 Specific Objectives 

 
To achieve the general objective, this research establishes the following specific 

objectives: 

1.3.2.1 Critically examine the limitations and challenges of current DSS used in 

precision poultry farming, with particular emphasis on environmental control. 

1.3.2.2 Evaluate the extent to which recent AI technologies, particularly LLMs 

and related techniques, can be integrated to strengthen knowledge-based decision 

support in intensive poultry farming. 

1.3.2.3 Develop and evaluate a knowledge-based DSS for poultry farming that 

incorporates recent AI technologies and is structured as a conversational agent 

resilient to uncertainty and contradiction. 

 

1.4 Methodology 
 

This master’s dissertation adopts an article-based format. The overall study is 

structured into three interdependent works that address, sequentially and 

complementarily, the different stages of investigation and validation of the proposed 

model. This methodological choice aims to align the partial scientific outputs with the 



 

  

21 

stages of the research process, ensuring logical continuity among the studies and 

coherence with the defined objectives. The specific methodologies employed in each 

article are detailed in their respective publications; therefore, this section presents the 

unified design and methodological procedures that guided the entire investigation, 

highlighting the scientific and operational structure common to all three studies. 

1.4.1 Research Design and Methodological Structure 

 
This master’s dissertation is characterized as applied in nature, experimental in 

design, and exploratory in scope, employing a quantitative–qualitative approach within 

an article-based structure. The study is applied because it aims to solve a concrete 

problem: the inconsistency and fragmentation of data supporting technical decisions 

in intensive production environments. It is experimental because it employs controlled 

tests with measurable variables, and exploratory due to the originality of integrating 

Logic Eτ, LLMs, and RAG, a combination still at an early stage within Production 

Engineering research. This methodological design ensures coherence between the 

research problem and the adopted empirical strategy, enabling a progressive analysis 

of theoretical and practical contributions across the stages of the investigation. 

The object of study is the DSS resulting from the integration of Logic Eτ, LLMs, 

and RAG, designed to operate under conditions of uncertainty and contradiction 

typical of complex production systems. The phenomenon under investigation is the 

process of logical-evidential inference and decision-making in fragmented and 

imperfect informational contexts, while the empirical unit of analysis corresponds to 

the decision-making processes related to environmental control and zootechnical 

management in broiler farms. 

The three articles that compose this master’s dissertation form an articulated and 

cumulative methodological trajectory, in which each study plays a specific role within 

the process of investigation and validation of the proposed model. The first article 

conducts a critical analysis of the state of the art, mapping conceptual and 

technological gaps in DSS applied to intensive poultry farming; the second performs 

an experimental evaluation of the RAG technique, assessing its contribution to the 

performance of LLMs in the domain of environmental control; and the third 

consolidates the integrative model, formalizing it in logical-evidential and 

computational terms and evaluating it according to criteria of consistency, accuracy, 

and operational applicability. 
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Table 1 summarizes the correspondence among the articles, their objectives, 

and the resulting scientific outputs. 

 
Table 1: Methodological structure of the master’s thesis. 

Article Journal Status Objective  Nature of the 
Investigation 

Scientific  
Outcome 

Decision Support 
Systems for 
Environmental Control in 
Poultry Production: 
Trends, Advances, and 
Perspectives 
 

Proceedings of 
SIMPEP  

Accepted 
for 

publication 

1.3.2.1 Systematic review 
and critical analysis 
of the state of the art. 

Identification of 
theoretical, 
technological, and 
methodological gaps. 

Enhancing Environmental 
Control in Broiler 
Production: Retrieval-
Augmented Generation 
for Improved Decision-
Making with Large 
Language Models 
 

AgriEngineering 
(MDPI) 

Published 
in 2025 

 
 

1.3.2.2 Applied performance 
experiment and 
comparative 
evaluation of 
LLM+RAG. 

Evidence on the 
accuracy, relevance, 
and applicability of 
RAG in DSS. 

A Decision Support AI-
Copilot for Poultry 
Farming: Leveraging 
Retrieval-Augmented 
LLMs and Paraconsistent 
Annotated Evidential 
Logic Eτ to Enhance 
Operational Decisions 

AgriEngineering 
(MDPI) 

Submitted 1.3.2.3 Logical–
computational 
modeling, 
implementation, and 
experimental 
validation 

Functional DSS 
prototype and 
acceptance criteria 
based on logical-
evidential inference 

Source: Prepared by the author.  

 
This cumulative methodological trajectory demonstrates the evolution of the 

research from theoretical formulation to experimental validation and applied model 

development, ensuring coherence among the conceptual, empirical, and technological 

stages of the study. 

 

1.4.2 Methodological Procedures 

 

The methodological procedures in this research are organized into four 

complementary axes, encompassing activities from the review and critical analysis of 

the literature to the empirical validation of the proposed model:  

1.4.2.1 Review and Critical Analysis of the State of the Art: The first 

methodological axis consisted of a systematic review and critical analysis of the 

literature on DSS applied to intensive poultry farming, with emphasis on environmental 

control approaches. This stage, corresponding to Article 1, aimed to identify 

theoretical, technological, and methodological gaps, as well as to understand the 

limitations of existing solutions in scenarios characterized by uncertainty and 

contradiction. 
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The review followed principles of systematic rigor: definition of descriptors, 

inclusion and exclusion criteria, bibliometric analysis, and thematic categorization. The 

results allowed the formulation of the research problem and the establishment of 

conceptual and operational requirements for the proposed method. 

1.4.2.2 Experimental Evaluation of Retrieval-Augmented Techniques: The 

second axis, developed in Article 2, consisted of a controlled experimental stage 

aimed at evaluating RAG as a strategic component for contextual query processing in 

natural language–based decision systems. 

Comparative experiments were conducted between language model executions 

with and without RAG, assessing metrics of semantic similarity, contextual relevance, 

and practical applicability. The results of this axis provided empirical evidence of 

RAG’s potential to enhance LLM performance and served as the basis for 

configuration and calibration decisions adopted in the subsequent stage. 

1.4.2.3 Modeling, Implementation, and Validation of the Proposed Model: The 

third methodological axis, corresponding to Article 3, encompassed the logical–

computational modeling, implementation, and experimental validation of the system 

resulting from the integration of Paraconsistent Annotated Evidential Logic Eτ (Logic 

Eτ), LLMs, and RAG. 

In this stage, mechanisms for logical-evidential inference, computational 

modules for contextual processing and knowledge base construction, as well as the 

conversational decision-support agent responsible for semantic interpretation, were 

defined. Validation was carried out based on criteria of logical-evidential consistency, 

semantic accuracy, and operational applicability, demonstrating the feasibility and 

robustness of the developed model. 

1.4.2.4 Validity and Reproducibility Synthesis: This axis established procedures 

to ensure internal, external, and construct validity, as well as the reproducibility of 

results. Internal validity was controlled through the standardized experiments and 

repeated runs; external validity was ensured by generalization across poultry decision 

domains; and construct validity was verified through the alignment between the 

principles of Logic Eτ and the decision-making phenomenon under uncertainty. All 

codes, parameters, and datasets were documented and versioned in a public 

repository to ensure traceability and reproducibility. 

The empirical evidence resulting from these verifications is presented and 

discussed in the subsequent chapters. 
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Together, these four methodological axes, systematic review, controlled 

experimentation, logical–computational modeling and validation, and synthesis of 

validity, provide an integrated framework that ensures coherence, methodological 

consistency, and reproducibility throughout the study. 

 

1.4.3 Methodological Integration Among the Articles 

 

The methodological integration among the articles stems from the logical and 

cumulative linkage of their scientific purposes. Each study contributes in a distinct yet 

complementary manner to the consolidation of the proposed method, forming an 

incremental trajectory in which the outcomes of one stage redefine the conditions and 

hypotheses of the next. 

The first article establishes the conceptual and diagnostic framework of the 

research, identifying theoretical and operational gaps that justify the need for a model 

capable of formally addressing contradiction and incompleteness. Its findings not only 

contextualize the problem but also define the evaluation criteria and performance 

dimensions to be observed in the subsequent experimental phases. 

The second article plays an intermediate instrumental role, translating the 

identified gaps into testable hypotheses and experimental parameters. The controlled 

evaluation provides empirical evidence of the behavior of language models when 

exposed to heterogeneous data and generates quantitative and qualitative 

foundations for the design of the following stage. 

The third article represents the synthesis stage of the process, integrating the 

logical-evidential foundations of Logic Eτ with the experimental evidence accumulated 

in the previous phases. This integration results in the formalization of the model, its 

computational implementation, and the assessment of criteria related to consistency, 

accuracy, and operational applicability. 

In summary, the methodological trajectory unfolds through the following 

sequence: logical–theoretical foundation → review and diagnostic analysis (Article 1) 

→ component experimentation (Article 2) → modeling, implementation, and validation 

of the integrative model (Article 3), ensuring epistemological continuity and 

experimental rigor. 

1.5 Structure of the Master’s Thesis 
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This master’s dissertation is organized into four chapters, structured from the 

conceptual framework to the empirical validation and final conclusions of the study. 

Chapter I – Introductory Considerations, presents the contextualization of the 

research theme, the rationale, the objectives, and the methodological design of the 

research. 

Chapter II – Theoretical Framework brings together the conceptual and scientific 

foundations that support the study, addressing intensive poultry farming, Decision 

Support Systems, Paraconsistent Annotated Evidential Logic Eτ, and Artificial 

Intelligence technologies based on Large Language Models. 

Chapter III – Results and Discussion contains the three scientific articles that 

constitute the core of this work, each corresponding to a stage of the investigative 

process: (i) critical analysis of the state of the art, (ii) controlled experimentation of the 

RAG technique, and (iii) modeling and validation of the DSS integrating Logic Eτ and 

LLM agents with RAG. It concludes with an integrative discussion that consolidates 

the main findings and their theoretical and applied implications. 

Finally, Chapter IV – Final Conclusions summarizes the research contributions, 

limitations, and perspectives for future work, highlighting the methodological and 

practical advances provided by the developed integrative model. 
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CHAPTER II 
 

2 THEORETICAL FRAMEWORK 
 

This chapter consolidates the theoretical and scientific foundations that support 

the integration of Paraconsistent Annotated Evidential Logic Eτ (Logic Eτ), Large 

Language Models (LLMs), and Retrieval-Augmented Generation (RAG) within the 

scope of Decision Support Systems (DSS) applied to intensive poultry farming. This 

integration, which constitutes the core of the research, underpins the development of 

an inference method capable of operating under conditions of informational 

fragmentation, contradiction, and incompleteness. 

The theoretical framework is structured around four complementary pillars: (i) the 

empirical context of intensive poultry farming and its decision-making specificities; (ii) 

the conceptual and methodological evolution of Decision Support Systems in 

Production Engineering; (iii) the formal structure of Logic Eτ for managing 

contradictory or incomplete evidence; and (iv) the role of LLMs and RAG in expanding 

contextual processing and semantic interpretation capabilities in intelligent systems. 

 

 

2.1 Application Domain: Decision-Making in Intensive Poultry Systems 
 

Intensive poultry farming constitutes the application domain adopted in this 

research, serving as the empirical environment for the formulation and evaluation of 

the DSS based on a theoretical–operational structure composed of three 

complementary dimensions: logical-evidential inference, contextual processing, and 

semantic interpretation. This context is characterized by high operational complexity 

and by the interdependence among environmental, health, and zootechnical variables, 

which impose on the decision-making process recurring conditions of fragmentation, 

uncertainty, contradiction, and informational incompleteness (Curi et al., 2017; Hafez 

& Attia, 2020; Gržinić et al., 2023; Qi et al., 2023). 

Environmental control, as well as other domains of zootechnical management, 

requires continuous and multivariate decisions involving numerous variables under 

dynamic and often conflicting constraints. The simultaneous presence of multiple 

information sources, with different levels of reliability and temporal alignment, makes 
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the inference process particularly sensitive to the coherence of the available data 

(Martinez et al., 2021). 

In this context, DSS act as fundamental instruments for the integration and 

interpretation of such information (Zhai et al., 2020; Rossi, Caffi & Salinari, 2012). 

However, traditional solutions remain constrained by assumptions of data consistency 

and completeness, reducing their ability to operate under ambiguous or contradictory 

conditions, typical of intensive production systems (Hamsa & Bellundagi, 2017; 

Berckmans, 2009; Cheng, McCarl & Fei, 2022). 

These limitations have developed in parallel with the rapid advancement of 

sensing and data analytics technologies, which have transformed the informational 

infrastructure of modern poultry production. In recent years, technological 

intensification in the sector has consolidated a highly automated and data-driven 

production ecosystem. Several studies highlight the convergence of IoT sensors, 

wireless networks, and cloud analytics platforms as the core of precision poultry 

farming practices, focused on the continuous acquisition of environmental, behavioral, 

and performance data from flocks (Astill et al., 2020; Halachmi et al., 2019; Zheng et 

al., 2021). 

These systems comprise multiple functional layers such as detection, analysis, 

and decision, which, when articulated, enable the monitoring of critical variables such 

as temperature, humidity, ventilation, air quality, noise, lighting, feeding patterns, and 

animal behavior. (Lashari et al., 2018). The continuous data flow captured by sensors, 

cameras, and microphones is processed in cloud computing architectures and stored 

in large-scale repositories such as data warehouses and data lakes (Wu et al., 2023). 

These infrastructures support the application of machine learning, large-scale data 

analytics, and expert systems to interpret patterns and support decision-making (Ojo 

et al., 2022; McAfee & Brynjolfsson, 2012). 

Although these approaches represent a significant advance, they remain 

predominantly predictive and quantitative, lacking formal reasoning mechanisms 

capable of handling contradiction, incompleteness, and evidence heterogeneity, 

limitations that justify the adoption of decision systems based on logical-evidential 

inference, as proposed in this study. 

Thus, intensive poultry farming is used here not as the primary object of 

investigation but as an empirical platform for assessing the effectiveness of a DSS 

based on the integration of Logic Eτ, LLMs, and RAG. This choice is justified by its 

suitability for representing complex decision environments in which informational 
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heterogeneity, inconsistent evidence, and the need for resilient and operationally 

actionable responses coexist (Zheng et al., 2021; Liakos et al., 2018; Brugler et al., 

2024). 

From this scenario of limitations in current decision mechanisms arises the need 

for support models grounded in logical inference, as discussed in the following section. 

 

2.2 Decision Support Systems  
 

Decision Support Systems have historically been conceived as tools for 

formalizing analytical reasoning and structuring complex problems. The first 

approaches, developed between the 1970s and 1990s, were predominantly based on 

mathematical and heuristic models, emphasizing optimization, simulation, and 

multicriteria methods. This generation of systems featured highly prescriptive 

architectures, driven by explicit rules and stable data flows, which limited their 

applicability to deterministic and relatively static environments (Elkady, Hernantes & 

Labaka, 2024). 

With the advancement of digitalization and the proliferation of repositories and 

sensors, DSS evolved into data-driven approaches in which machine learning and 

large-scale analytics assumed a central role. The data-driven paradigm transformed 

data science into a core component of the decision-making process, enabling pattern 

detection, event prediction, and probabilistic evaluation of alternatives. This transition 

increased system autonomy and brought the field closer to what is now referred to as 

Decision Intelligence (DI), integrating analytical reasoning, modeling, and 

organizational action (Pratt, Bisson & Warin, 2023). Current DSS operate over 

integrated data pipelines that combine multiple sources, preprocessing routines, 

predictive models, and user-context–adapted interfaces (Elkady, Hernantes & Labaka, 

2024). 

More recently, emphasis has shifted from prediction to decision-making, giving 

rise to a new generation of knowledge-based systems supported by artificial 

intelligence. These models combine formal domain representations, such as 

ontologies and rules, with adaptive learning mechanisms, promoting explainable and 

auditable inferences. Within this context, the field has been repositioned under the 

designation Human–AI Systems (HAIS), in which collaboration between human and 

artificial agents becomes central to producing decisions that are more consistent, 

interpretable, and governable (Storey, Hevner & Yoon, 2024). Empirical evidence 
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indicates that LLMs are already capable of generating and evaluating strategies with 

performance comparable to that of human experts, enhancing search, aggregation, 

and evaluation capabilities, essential features for third-generation DSS (Csaszar, 

Ketkar & Kim, 2024). 

From an architectural standpoint, contemporary DSS follow a functional structure 

composed of four interdependent layers: acquisition, processing, inference, and 

interface. The acquisition layer integrates data streams from sensors, machines, 

operational records, and external sources, while the processing layer performs 

cleaning, temporal synchronization, integration, and data curation. The inference layer 

combines machine learning models with decision rules and symbolic mechanisms, 

fostering transparency and contextualization of recommendations. Finally, the 

interface layer delivers diagnostics, explanations, and actionable recommendations. 

This sequence, data, analysis, decision, and action, is widely recognized in agricultural 

and livestock precision systems, reflecting the principles of modularization and 

interoperability that underpin current Farm Management Information Systems (FMIS) 

and Smart Farming platforms (Fountas et al., 2015; Wolfert et al., 2017). 

The effectiveness of a DSS, however, fundamentally depends on the quality, 

coherence, and integration of information. In agro-industrial contexts, heterogeneous 

environmental, zootechnical, and economic data require metadata standardization, 

granularity control, and the use of domain ontologies to stabilize meaning and ensure 

consistency across modules (Wolfert et al., 2017; Zheng et al., 2021). The coherence 

between data and inference is critical for the reliability of automated actions, as 

integration failures directly affect the timeliness and quality of decisions (Berckmans, 

2017; Norton et al., 2019). 

The pursuit of interoperability and logical consistency has thus become a 

structural requirement. Service-oriented architectures and data contracts enable 

modular expansion without structural disruption, while versioning and traceability 

standards ensure end-to-end coherence in the information flow. As a result, DSS have 

evolved from prescriptive and isolated systems into integrated, knowledge-based 

decision ecosystems aligned with the contemporary need for rapid, explainable, and 

evidence-supported decisions. 

 

Nonetheless, this evolution highlights a persistent limitation: although DSS have 

significantly increased their capacity to process large data volumes and incorporate 

adaptive learning, they still lack formal mechanisms capable of simultaneously 
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addressing contradiction, fragmentation, and informational incompleteness, conditions 

inherent to complex production systems. It is at this point that those paraconsistent 

logics, particularly Logic Eτ, become relevant as formal structures capable of 

preserving the coherence of reasoning even under uncertainty and conflict (Abe; 

Akama & Nakamatsu, 2015), as discussed in the following section. 

 

 

2.3 Paraconsistent Logic 
 

Classical logic, since Aristotle, has been structured around the dichotomy of truth 

and falsity and the principle of non-contradiction, according to which a proposition 

cannot be both true and false simultaneously. This binary formalism, foundational to 

mathematics and computation, proves limited for representing complex phenomena in 

which uncertainty, gaps, and conflicting information coexist (Abe, Akama & 

Nakamatsu, 2015). 

As a response, non-classical logics emerged, designed to expand 

representational and inferential capacity under conditions of incompleteness and 

inconsistency. Among them, Paraconsistent Logic (PL) stands out for enabling the 

treatment of contradictions without leading the system to triviality, that is, without 

making every proposition logically derivable (Abe 1992; Abe; Akama & Nakamatsu, 

2015; Akama & Da Costa, 2016). 

Building upon PL, Abe developed the Paraconsistent Annotated Logic (PAL), 

which introduced the concept of annotation: each proposition is accompanied by a 

value expressing the degree of available evidence. This structure allows for the 

representation of information that is partially true or false, marking a milestone in the 

formalization of reasoning under uncertainty and serving as the foundation for 

subsequent evidential formulations (Abe, 2011; Abe; Akama & Nakamatsu, 2015; 

Akama, 2016; Inacio da Silva Filho, Abe & Torres, 2008). 

 

 

2.3.1 Paraconsistent Annotated Evidential Logic Eτ 

 

The Paraconsistent Annotated Evidential Logic Eτ is an extension of the PAL 

that explicitly incorporates the treatment of favorable (μ) and unfavorable (λ) evidence, 

both ranging within the interval [0, 1]. Each proposition p is represented by the pair (μ, 
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λ), which simultaneously expresses the degrees of favorable and unfavorable 

evidence associated with a given piece of information (Abe, 2011; Abe, Akama & 

Nakamatsu, 2015). 

 

Logic Eτ is structured around three complementary conceptual spaces: 

• Eτ Lattice: defines an ordered set of pairs (μ, λ) within the unit square  

[0, 1]², where (μ₁, λ₁) ≤ (μ₂, λ₂) if μ₁ ≤ μ₂ and λ₁ ≥ λ₂. This order expresses 

evidential dominance and allows the application of infimum and 

supremum operators. The canonical negation is given by ∼(μ, λ) = (λ, μ). 

This lattice constitutes the operational substrate for evidential inference. 

 

Figure 4. Lattice Eτ with Partial Order 

 

Source: Adapted by the author based on Abe, Akama, and Nakamatsu (2015). 

 

• USCP (Unit Square of the Cartesian Plane): provides a geometric 

representation of the evidential lattice, allowing visualization of logical states 

in a two-dimensional plane.  
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Figure 5. USCP (Unit Square of the Cartesian Plane) 

 

Source: Adapted by the author based on Carvalho, Abe (2018).  

.  

 

The vertices represent the classical states, True (V), False (F), Inconsistent 

(T), and Paracomplete (⊥), while the intermediate regions correspond to 

quasi-states or transitional states, such as QV→T, QV→⊥, QF→T, and 

QF→⊥, which indicate tendencies in the balance of evidence (Table 2).  

 
Table 2: Symbolic representation of extreme and non-extreme logical states in 

Logic Eτ, including qua-si-states and transitional tendencies. 

Symbol State 

V True 

QV→T Quasi-true, tending to inconsistent; 

QV→⊥ Quasi-true, tending to paracomplete 

F False 

QF→T Quasi-false, tending to inconsistent 

QF→⊥ Quasi-false, tending to paracomplete 

T Inconsistent 

QT→V Quasi-inconsistent, tending to true 

QT→F Quasi-inconsistent, tending to false 

⊥ Paracomplete or Indeterminate  

Q⊥→V Quasi-paracomplete, tending to true 

Q⊥→F Quasi-paracomplete, tending to false 

 

Source: Adapted by the author based on Carvalho, Abe (2018).  
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• Diagram of Certainty and Contradiction Degrees: results from the nonlinear 
transformation  

T (μ, λ) = (Gce(μ, λ), Gct(μ, λ)) = (μ−λ, μ+λ−1) 

 

which projects the evidential space onto two orthogonal axes: the degree of 

certainty (Gce) and the degree of contradiction (Gct). This transformation 

defines the operational plane employed in inference and decision-making 

processes, where extreme and quasi-states are interpreted in a graded 

manner. It also allows the establishment of control limits that help the system 

filter and stabilize decisions under uncertainty and contradiction: the Upper 

Certainty Control Value (Vscc), Lower Certainty Control Value (Vicc), Upper 

Contradiction Control Value (Vscct), and Lower Contradiction Control Value 

(Vicct). 

 

Figure 6. Diagram of Certainty and Contradiction Degrees 

 

Source: Adapted by the author based on Abe, Akama, and Nakamatsu (2015).  

 

Logic Eτ enables continuous reasoning across states of truth, falsity, 

inconsistency, and paracompleteness, providing a formal foundation for logical-

evidential inference, one of the conceptual pillar of this work.  
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2.3.2 Para-Analyzer Algorithm 

 

The Para-Analyzer Algorithm (PAA) computationally implements the principles 

of Logic Eτ. Based on favorable (μ) and unfavorable (λ) evidence, the PAA calculates 

the degree of certainty (Gce = μ − λ) and the degree of contradiction (Gct = μ + λ − 1), 

comparing them with control parameters (Vscc, Vicc, Vscct, Vicct) to classify each 

proposition as true, false, inconsistent, or paracomplete (Carvalho & Abe, 2018). 

This algorithm ensures stability and traceability in paraconsistent reasoning, 

enabling computational systems to process uncertain or contradictory data without 

compromising logical coherence, an essential requirement for Decision Support 

Systems DSS. 

2.3.3 Paraconsistent Decision Method 

 
The Paraconsistent Decision Method (PDM) applies Logic Eτ to decision-making 

problems. Information is structured into an evidence matrix, in which μ and λ values 

represent the degrees of favorable and unfavorable evidence associated with 

influence factors defined by domain experts. Based on these pairs, the method 

computes Gce and Gct and uses the decision rules of the PAA to determine the logical 

state of each alternative (Carvalho & Abe, 2018). 

The PDM enables the integration of multiple criteria and sources of evidence 

without requiring complete data consistency, making it suitable for complex production 

contexts such as intensive poultry systems, where decisions must be made under 

conditions of contradiction, uncertainty, and informational fragmentation. 

Thus, Logic Eτ and its associated developments (PAA and PDM) constitute the 

core of a framework for logical-evidential inference, whose integration with LLMs and 

RAG is discussed in the next section. 

 

2.4 Large Language Models and Retrieval-Augmented Generation  
 

Early approaches to language modeling were relied on statistical methods such 

as n-gram models and simple neural networks focused on word prediction. The Neural 

Probabilistic Language Model (NPLM) introduced the concept of representing words 

as continuous vectors, enhancing generalization capacity and marking the beginning 

of distributed representations (Bengio et al., 2003).  
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The consolidation of Transformer architectures, based on attention mechanisms, 

replaced recursive and convolutional operations with direct connections among all 

words in a sequence, enabling the capture of long-range dependencies and improving 

training efficiency (Vaswani et al., 2017). Models such as word2vec and BERT further 

refined this capacity by learning semantic and contextual relationships from large text 

corpora (Mikolov et al., 2013; Devlin et al., 2019). 

As scale increased, Large Language Models (LLMs) emerged, capable of 

learning from few examples and dynamically adapting to context. This evolution 

expanded generalization capabilities but also revealed important limitations, such as 

the generation of incorrect information (hallucinations), the propagation of biases from 

training data, and the lack of transparency in inference processes (Brown et al., 2020; 

Lin, Hilton & Evans, 2022).  

Purely generative models, relying solely on internal knowledge acquired during 

training, face structural constraints that compromise reliability. Research shows that 

increasing model scale does not guarantee higher precision or consistency, making it 

necessary to adopt control and detection mechanisms such as uncertainty estimation 

to identify potentially confabulated outputs (Farquhar et al., 2024; Lin, Hilton & Evans, 

2022). 

To mitigate these limitations, contextual learning strategies were developed, 

including context windows, in-context learning, and few-shot prompting, which function 

as temporary memory mechanisms allowing models to adjust responses based on 

examples provided within the prompt. Although effective, these techniques remain 

sensitive to example formatting and the positioning of relevant information, limiting the 

use of extended contexts (Dong et al., 2024; Liu et al., 2024; Zhang et al., 2025). 

The need for anchoring and internal coherence control led to the development of 

Retrieval-Augmented Generation (RAG), which combines knowledge generation and 

retrieval to improve factual accuracy. RAG introduces external, up-to-date information 

into the model’s context, allowing responses to be grounded in verifiable evidence 

(Lewis et al., 2020). Complementary strategies such as self-consistency, comparing 

multiple reasoning chains, and the ReAct method, interleaving reasoning and external 

retrieval, further enhance reliability and interpretability in inferential processes (Wang 

et al., 2023; Yao et al., 2023). 

RAG is therefore a hybrid architecture that integrates parametric knowledge 

embedded in the model itself with non-parametric knowledge retrieved from external 

sources. Its operation consists of three main stages: retrieval, which locates relevant 
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passages; re-ranking to optimize selection; and generation to produce the final 

response grounded on the retrieved content (Lewis et al., 2020). Dense Passage 

Retrieval (DPR) leverages vector representations to compare queries and documents, 

outperforming traditional approaches such as BM25 in retrieval accuracy (Karpukhin 

et al., 2020). 

By grounding responses in verifiable evidence, RAG reduces hallucinations and 

increases factual precision while enabling continuous knowledge updates without 

retraining the base model. Experiments with internet-augmented models demonstrate 

accuracy gains in open-domain question-answering tasks (Lazaridou et al., 2022; 

Izacard et al., 2023). 

These advantages explain the growing adoption of RAG in DSS and 

conversational agents, which require reliable and auditable responses. In knowledge-

driven dialogues, internet-augmented architectures learn to issue retrieval queries and 

condition response generation on the recovered material, integrating up-to-date 

information and minimizing contradictions (Komeili, Shuster & Kizilkaya, 2022). Multi-

agent variants combine structured data (e.g., knowledge graphs) and unstructured 

text, increasing evidence verifiability. Evaluation of such systems considers both 

retrieval, through metrics such as nDCG@k, Recall@k, and MRR (Thakur et al., 

2021), and generation, measured by semantic similarity (BERTScore) and source 

fidelity (faithfulness), following the AIS (Attributable to Identified Sources) framework 

(Rashkin et al., 2023; Zhang et al., 2020). 

Reducing hallucinations and bias in language models requires complementary 

strategies acting at both training and inference stages. Key approaches include chain-

of-verification, which guides the model to review its own outputs; uncertainty 

estimation, which flags potentially incorrect content; and alignment methods such as 

Reinforcement Learning from Human Feedback (RLHF) and Constitutional AI, which 

reduce biased or undesirable behavior. Evaluation frameworks like HELM propose 

integrated metrics that jointly assess quality, robustness, and fairness in model outputs 

(Dhuliawala et al., 2024; Farquhar et al., 2024; Christiano et al., 2017; Bai et al., 2022; 

Liang et al., 2022). 

Recently, explainability and auditability have become essential for the safe 

application of LLMs in critical environments. The field of Explainable AI (XAI) aims to 

make model reasoning more transparent through techniques that identify attention 

patterns, salience, and relevance in generated text. Recent approaches focused on 

source faithfulness highlight the need to verify whether responses are truly attributable 
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to retrieved content, as established in the AIS framework (Zhao et al., 2024; Rashkin 

et al., 2023; Wang et al., 2023). In RAG- or DSS-based systems, such practices 

include the registration of citations, evidence excerpts, and query logs, reinforcing 

traceability and regulatory compliance. 

Finally, integrating LLMs with formal reasoning, especially neurosymbolic 

approaches, has proven promising for improving coherence and interpretability. This 

approach combines the statistical learning of language models with symbolic logic 

structures, allowing formal constraints during inference and enabling the extraction of 

interpretable rules (Garcez & Lamb, 2020). Notable examples include Logical Neural 

Networks (LNN), which preserve first-order semantic relations (Riegel et al., 2020), 

and DeepProbLog, which integrates neural networks with probabilistic logic 

programming in continuous learning flows (Manhaeve et al., 2018). Other 

architectures, such as Program-Aided Language Models (PAL), allow LLMs to 

generate intermediate programs and delegate their execution to formal interpreters, 

ensuring greater accuracy and verifiability of results (Gao et al., 2023). 

In summary, contemporary challenges of LLMs focus on enhancing factuality, 

reducing bias, ensuring explainability, and integrating formal reasoning mechanisms 

that make responses more consistent, reliable, and auditable, conditions essential for 

their trustworthy adoption in knowledge-based DSS. 
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CHAPTER III 

3 RESULTS  
 

This chapter presents and discusses the results obtained from the three studies 

that constitute the empirical core of the research. Each article corresponds to a stage 

of the methodological trajectory described in Chapter I and progressively contributes 

to the development and validation of the integrative model proposed. 

The chapter is structured into three main subsections, each dedicated to one 

of the articles comprising this master’s thesis, followed by an integrative discussion of 

the results.  

The final subsection consolidates the findings of the three studies, highlighting 

their convergences, complementarities, and theoretical and practical implications, 

thereby forming the basis for the conclusions presented in Chapter IV. 

 

  



 

  

39 

3.1 Article 1 – Decision Support Systems for Environmental Control in 
Poultry Production: Trends, Advances, and Perspectives 

 

The first article, titled “Decision Support Systems for Environmental Control in 

Poultry Production: Trends, Advances, and Perspectives,” was accepted for 

presentation at the XXXII Symposium on Production Engineering (SIMPEP, 2025) and 

will be published in the conference proceedings. The study was conducted by Marcus 

Vinícius Leite, Jair Minoro Abe, Marcos Leandro Hoffmann Souza, and Irenilza de 

Alencar Nääs, affiliated with Universidade Paulista (UNIP) and Universidade do Vale 

do Rio dos Sinos (UNISINOS). 

The purpose of this study was to map and systematize the state of the art 

regarding the use of DSS applied to environmental control in intensive poultry farming 

systems. The investigation sought to understand how these tools have been employed 

to support decisions in operationally complex contexts where environmental, 

physiological, and production variables coexist (Berckmans, 2017; Li et al., 2020; 

Neethirajan, 2025). As the first methodological stage of the research, the study served 

a diagnostic and foundational role by identifying structural limitations of existing 

solutions and establishing the conceptual requirements that guided the formulation of 

the integrative model proposed in this master’s dissertation (Zhai et al., 2020; Brugler 

et al., 2024). 

The methodology followed a systematic literature review, conducted according 

to the protocols of Kitchenham (2004) and the PRISMA, 2020 guidelines (Page et al., 

2021), ensuring traceability and rigor in the selection and analysis of evidence. 

Searches conducted in the Scopus and Web of Science databases resulted in the 

identification, screening, and selection of studies that met the established inclusion 

criteria and composed the final corpus for analysis. The research questions were 

structured using the PICOC logic (Rossi, Caffi & Salinari, 2012), encompassing the 

identification of DSS types, decision levels, benefits, limitations, and emerging trends. 

Information was organized and coded through predefined and emerging categories, 

combining qualitative and quantitative analysis to produce a critical synthesis guided 

by thematic patterns and significant variations. The full protocol, including search 

terms and extraction spreadsheets, was documented and made publicly available 

(marcusviniciusleite, 2025), ensuring transparency and reproducibility. 

 



 

  

40 

The results revealed a field in consolidation, with accelerated growth since, 

2020 and a predominance of journal publications, indicating both technical and 

scientific maturity (Astill et al., 2020; Gržinić et al., 2023). Most systems were based 

on embedded IoT architectures equipped with physical sensors and low-power 

microcontrollers for continuous environmental monitoring and local inference using 

machine learning, fuzzy logic, and neural networks (Curi et al., 2017; Liakos et al., 

2018; Zheng et al., 2021). Hybrid systems combining statistical modeling, symbolic 

paradigms, and predictive techniques were also identified (Martinez et al., 2021; Zhai 

et al., 2020). The majority of applications focused on short-term operational decisions, 

such as ventilation, lighting, and climate control, while tactical and strategic systems 

aimed at simulation and planning remain underrepresented (Hamsa & Bellundagi, 

2017). 

The analysis highlighted recurring benefits related to improved environmental 

precision, process automation, animal welfare, and economic efficiency (Godinho et 

al., 2025; Neethirajan, 2025). However, methodological and operational gaps persist, 

limiting real-world applicability. These include the absence of validation in commercial 

farms, sensor fragility under harsh environmental conditions, low interoperability 

among subsystems, and dependence on continuous connectivity (Qi et al., 2023; 

Hafez & Attia, 2020). Many DSS remain confined to passive monitoring functions, 

lacking adaptive learning mechanisms or fault tolerance, which restricts their 

effectiveness in contexts marked by uncertainty and contradiction. 

At the same time, emerging technological trends indicate a transition toward a 

new generation of DSS, more resilient, integrated, and semantically enriched. 

Advances such as edge–cloud architectures, fusion of physiological and 

environmental data, use of smart sensors, and the incorporation of tinyML and 

explainable AI techniques have expanded system autonomy and interpretability 

(Berckmans, 2009; Zhai et al., 2020; Brugler et al., 2024). The early use of LLMs and 

RAG suggests a movement toward systems capable of integrating numerical inference 

and semantic reasoning, inaugurating a new paradigm of cognitive decision support 

in intensive poultry farming. 
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3.2 Article 2 – Enhancing Environmental Control in Broiler Production: 

Retrieval-Augmented Generation for Improved Decision-Making with 

Large Language Models 

 

The second article, titled “Enhancing Environmental Control in Broiler 

Production: Retrieval-Augmented Generation for Improved Decision-Making with 

Large Language Models,” was published in January, 2025 in AgriEngineering (MDPI), 

Volume 7, Issue 1, Article 12. The authors are Marcus Vinícius Leite, Jair Minoro Abe, 

Marcos Leandro Hoffmann Souza, and Irenilza de Alencar Nääs, affiliated with 

Universidade Paulista (UNIP) and Universidade do Vale do Rio dos Sinos 

(UNISINOS). 

The study aimed to empirically evaluate the impact of the RAG technique on 

the performance of LLMs in decision-support tasks related to environmental control in 

broiler farms. This stage corresponds to the experimental phase of the research and 

serves as the link between the theoretical diagnosis presented in the first article and 

the integrative modeling developed in the third. The purpose was to determine whether 

incorporating external evidence, retrieved from domain-specific knowledge bases, 

could enhance the semantic accuracy, contextual relevance, and practical applicability 

of LLM-generated responses (Lewis et al., 2020; Izacard & Grave, 2020; Li et al., 

2022). 

The investigation was conducted within the scope of natural-language-based 

DSS designed for the interpretation of technical and environmental control data in 

poultry production. Under controlled conditions, the study tested whether adding a 

document retrieval layer to a generation pipeline following the RAG paradigm could 

mitigate known limitations of purely generative models, such as factual gaps, 

inconsistencies, and hallucinations (Ji et al., 2022; Metze et al., 2024). The results of 

this stage guided parameter and metric adjustments for the subsequent logical-

computational modeling phase, establishing RAG as a core component of the system 

proposed in this master’s thesis. 

The experiment was conducted using a set of technical queries developed from 

international protocols and recommendations on environmental control in poultry 

farming (Mottet & Tempio, 2017; Hafez & Attia, 2020). Each query was submitted to 

controlled executions of state-of-art LLM (GPT 4o) under two conditions: without and 
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with RAG. In the second configuration, the model accessed a domain-specific 

knowledge base indexed by vector representations and retrieved by semantic 

similarity using FAISS and LangChain (Reimers & Gurevych, 2019; Devlin et al., 2018; 

Brown et al., 2020). The responses were evaluated using semantic similarity and 

contextual relevance metrics, computed with Sentence-BERT embeddings, and 

statistically analyzed through a paired t-test, following methodologies inspired by 

comparative studies of retrieval and generation techniques (Guo et al., 2022; Reimers 

& Gurevych, 2019). The entire experimental pipeline was implemented in Python, 

employing the langchain, faiss-cpu, and sentence-transformers libraries, with all code 

and datasets publicly released to ensure transparency and reproducibility. 

The results showed significant performance improvements across all metrics. 

Semantic similarity between responses and reference standards increased markedly, 

accompanied by a substantial rise in contextual relevance (Lewis et al., 2020). 

Responses generated with RAG were more accurate, complete, and auditable, 

showing a marked reduction in hallucinations and inconsistencies (Ji et al., 2022; 

Doshi-Velez & Kim, 2017). Although the retrieval layer slightly increased average 

response time, the additional computational cost was offset by higher reliability and 

traceability, attributes essential for decision-making systems in sensitive operational 

contexts (Vaswani et al., 2017; Berckmans, 2017). 

From a theoretical standpoint, the results demonstrate that RAG acts as an 

evidential control mechanism by grounding responses in verifiable content and 

constraining the model’s uncertainty space. Conceptually, this function parallels the 

weighting structure between favorable and unfavorable evidence in the Logic Eτ (Abe, 

2011; Abe & Carvalho, 2018), reinforcing the convergence between probabilistic 

reasoning and logical-evidential inference. The integration of RAG with LLMs thus 

enables a more coherent and verifiable inferential process, in which the model not only 

generates responses but also reasons based on evidence, approaching analytical and 

interpretable behavior. 

These findings consolidate RAG as an intermediate layer between semantic 

interpretation and logical-evidential inference, establishing the operational bridge that 

supports the architecture proposed in this master’s thesis. Its adoption enables 

natural-language-based decision support systems to operate with greater reliability, 

traceability, and technical grounding, key features for the development of 

conversational agents in intensive poultry farming and, more broadly, in productive 

domains characterized by uncertainty and contradiction. 
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3.3 A Decision Support AI-Copilot for Poultry Farming: Leveraging Retrieval-

Augmented LLMs and Paraconsistent Annotated Evidential Logic Eτ to 

Enhance Operational Decisions 

 
The third article, titled “A Decision Support AI-Copilot for Poultry Farming: 

Leveraging Retrieval-Augmented LLMs and Paraconsistent Annotated Evidential 

Logic Eτ to Enhance Operational Decisions,” was submitted to the international journal 

AgriEngineering (MDPI) and received a favorable review, currently undergoing final 

revision according to editorial recommendations. The study was authored by Marcus 

Vinícius Leite, Jair Minoro Abe, and Irenilza de Alencar Nääs, affiliated with 

Universidade Paulista (UNIP) and Marcos Leandro Hoffmann Souza, affiliated with 

Universidade do Vale do Rio dos Sinos (UNISINOS). 

This study represents the synthesis and validation stage of the research, 

integrating the theoretical, experimental, and computational components developed in 

the previous phases. Its main objective was to design, implement, and evaluate a DSS 

based on the integration of Logic Eτ, LLMs, and RAG, thereby consolidating a 

conversational agent capable of operating under conditions of uncertainty, 

contradiction, and informational incompleteness characteristic of intensive poultry 

farming (Abe, Akama & Nakamatsu, 2015; Carvalho & Abe, 2018; Lewis et al., 2021).  

The research aimed to demonstrate the practical feasibility of the proposed 

integrative model by transforming logical-evidential inferences into contextually 

grounded and semantically consistent responses. To achieve this, it articulated three 

complementary dimensions: logical-evidential inference, responsible for processing 

favorable and unfavorable evidence (Abe, 2014; de Carvalho Junior et al., 2024); 

contextual processing, guiding the retrieval and weighting of relevant information 

through RAG (Li et al., 2022; Izacard & Grave, 2021); and semantic interpretation, 

performed by the LLM, which generates linguistically coherent responses and 

recommendations (Brown et al., 2020; Vaswani et al., 2017). Positioned in the third 

methodological phase, modeling, implementation, and validation, this study provides 

the empirical consolidation of the theoretical–operational model, evaluating its 

performance in terms of logical-evidential consistency, semantic accuracy, and 

operational applicability. 

The developed architecture was structured into three main modules: the 

Knowledge Base Construction Pipeline (KBCP), responsible for preprocessing 

technical and scientific documents, including text extraction, chunk segmentation, 
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vectorization, and indexing via FAISS Vector Store (Wang et al., 2025); the Domain-

Specific Knowledge Base (DS-KB), which stores the vector repository and enables 

semantic search through cosine similarity (Reimers & Gurevych, 2019); and the 

Conversational Decision Support Agent (C-DSS-A), which integrates the logical-

evidential inference layer (implemented according to the Para-Analyzer Algorithm, 

PAA, of Logic Eτ) with the state-of-the-art LLM (GPT-4o) (OpenAI et al., 2024), 

combining formal reasoning and natural language generation within a conversational 

interface.  

Experiments were conducted using representative queries from five decision 

domains in poultry production, environment, nutrition, health, welfare, and 

management, processed under four conditions: without preprocessing, with 

preprocessing (normalization and lemmatization), with RAG enabled, and with RAG 

combined with Logic Eτ (Boban et al., 2020; Pramana et al., 2022). Responses were 

evaluated using semantic similarity, contextual relevance, and logical-evidential 

consistency metrics, measured through the parameters (Gce, Gct) and control values 

for certainty and contradiction (Vscc, Vicc, Vscct, Vicct) (Abe, 2011; Carvalho & Abe, 

2018). Global performance was statistically analyzed and visualized through 

correlation matrices and Unit Square in Cartesian Plane (USCP) diagrams, enabling 

observation of inference stability under varying degrees of uncertainty and 

fragmentation (Abe, 2011; Akama, 2016). 

The results showed that the integrated Logic Eτ and LLM with RAG system 

achieved significant gains in both consistency and precision compared with versions 

lacking logical-evidential inference. The average semantic similarity of responses 

increased by 18.2%, while contextual relevance rose by 15.6%, confirming the synergy 

between retrieval and inference layers. The distribution of evidence pairs (μ, λ) 

revealed a higher concentration in the consistent truth quadrant (V) and a substantial 

reduction of occurrences in the inconsistent (T) and paracomplete (⊥) states, 

demonstrating the system’s ability to stabilize decisions even under contradiction and 

incompleteness (Abe, 2014; de Carvalho Junior et al., 2024). RAG reduced semantic 

dispersion by incorporating relevant external evidence, while Logic Eτ acted as a 

stabilizing inference filter, mitigating internal contradictions and enhancing reasoning 

interpretability (Carvalho & Abe, 2018; Abe, Akama & Nakamatsu, 2015). The system 

proved capable of justifying each response based on its corresponding logical-

evidential state and retrieved sources, promoting transparency and traceability (Leite 

et al., 2025). Visualization in the USCP diagram revealed increased density in quasi-
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true states (QV→T), indicating a predominance of logically consistent responses 

supported by robust evidence (Abe, 2011; Akama, 2016). 

The findings confirm that integrating formal symbolic reasoning with 

probabilistic language models provides an effective approach for supporting complex 

decision-making in uncertain environments (Abe, Akama & Nakamatsu, 2015; de 

Carvalho Junior et al., 2024). Logic Eτ, by quantifying and weighting degrees of 

evidence, acts as a logical controller capable of regulating the uncertainty and 

contradiction inherent to natural-language reasoning (Abe, 2011; Abe, 2014). This 

integration enables the conversational agent not only to generate linguistically 

appropriate responses but also to evaluate the consistency of its own inferences, 

approaching an explainable and self-regulating behavior (Carvalho & Abe, 2018; Leite 

et al., 2025). Beyond validating the central hypothesis of this master’s thesis, the 

convergence among logical-evidential inference, contextual processing, and semantic 

interpretation, the study demonstrates that this integration produces a DSS that is 

consistent, interpretable, and adaptable, overcoming the coherence and explainability 

limitations of conventional DSS based solely on statistical learning (Brown et al., 2020; 

Vaswani et al., 2017). 

The results further reinforce the applicability of the approach to other productive 

domains requiring decision-making under uncertainty, highlighting the potential of 

Logic Eτ as a theoretical–computational framework for auditable and resilient 

intelligent systems (Carvalho & Abe, 2018; de Carvalho Junior et al., 2024). The 

proposed model goes beyond response automation by embedding verifiable and 

governable reasoning mechanisms, essential for the reliability and transparency of 

intelligent Decision Support Systems (Akama, 2016; Abe, 2011). Thus, this study 

consolidates Logic Eτ as the logical–operational core of the developed model, 

demonstrating its ability to sustain consistent, traceable, and formally explainable 

inference in natural-language-based systems applied to Production Engineering. 
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3.4 Cross-Study Discussion  

 

This dissertation, structured in three articles, outlines a research trajectory 

focused on the overarching objective of building and evaluating a DSS to support 

decision-making in intensive poultry farming, capable of operating under uncertainty 

and informational contradiction. The discussion presented not only synthesizes the 

results but interprets them in light of the current challenges of decision-making in 

intensive poultry farming that the proposed DSS seeks to address. 

Critical mapping of the state of the art revealed these challenges. By typifying 

existing DSS, their domains of application, and their limitations, the research 

highlighted a strong focus on short-term operational decisions, with a predominance 

of real-time monitoring and automation systems (Godinho et al., 2025; Neethirajan,, 

2025; Li et al.,, 2020), and little or no attention to the tactical and strategic layers (Zhai 

et al.,, 2020).  

It was also observed that, although poultry farming domains such as Housing 

and Environmental Control, Animal Nutrition, Poultry Health, Husbandry Practices, 

and Animal Welfare are interdependent, interoperability between them is virtually 

absent in the systems evaluated (Hafez; Attia, 2020). This reduces the systemic value 

of DSS, since their practical effectiveness depends not only on algorithmic 

sophistication, but also on their ability to integrate with production processes, offer 

interpretable and actionable recommendations, and align with the actual decision-

making context. 

This review of the state of the art also highlighted the originality and innovation 

of this research, which is part of an ongoing conceptual shift marked by the emergence 

of approaches based on language models and textual decision support (Lewis et al., 

2021). These approaches shift the focus from purely numerical inference to 

knowledge-based support, with an emphasis on generating understandable 

explanations. 

This exploratory phase of the research was presented in Article 1, fulfilling the 

objective of mapping and systematizing DSS focused on environmental control in 

poultry farming, and its findings guided the design of the final architecture of the 

proposed DSS. 

Subsequent experimental investigations have shown that the main limitation to 

the use of language models in intensive poultry farming goes beyond occasional 

hallucinations (Ji et al., 2023, Metze et al., 2024). The central obstacle lies in 
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contextual specificity, a result of the restrictions imposed by the bodies of knowledge 

used in LLM training, which compromises their ability to operate in highly specialized 

domains and hinders the advancement of emerging trends based on these models. 

Going beyond this diagnosis, the experiments consolidated in Article 2 advanced 

to a systematic evaluation of the effect of augmented retrieval on the quality of 

responses. This stage of the investigation demonstrated measurable gains in stability 

and semantic alignment between the responses generated by the LLM using the RAG 

technique and the specialized references (Izacard & Grave, 2021; Li et al., 2022). 

These results indicated a partial mitigation path for the identified obstacle. 

To fully address these limitations, the original LLM-based architecture with RAG 

is extended by incorporating Logic Eτ. Thus, as presented in Article 3, the 

methodological proposal integrates three components with distinct and 

complementary functions. LLM provides the ability to semantically interpret and 

generate responses in natural language, bridging the gap between the technical 

vocabulary present in the knowledge base and the way the producer formulates their 

questions. RAG implements contextual processing by restricting the LLM's reasoning 

space to a subset of relevant documents, expanding the coverage of specialized 

knowledge and reducing the variance of responses. Finally, Logic Eτ introduces formal 

conditions for the use of retrieved knowledge by transforming evidence into explicit 

degrees of certainty and contradiction.  

In this way, the DSS that is the subject of this research was designed as a 

knowledge-based conversational agent that integrates, in a continuous flow, semantic 

interpretation, contextual processing, and evidential inference with explicit thresholds 

of certainty defined experimentally. In such architecture, LLM and RAG are 

responsible for linguistic and contextual competence, while Logic Eτ governs the 

decision-making process by determining when the system can affirm, doubt, hesitate, 

or refuse a response. Article 3 examined this systemic dimension by demonstrating 

that the DSS incorporates an inference module capable of qualifying the reliability of 

responses through degrees of certainty and contradiction. 

The ability to explicitly deal with thresholds of uncertainty and contradiction 

distinguishes the proposed DSS from approaches based solely on probability or 

heuristic confidence thresholds. Logic Eτ allows for the representation of paracomplete 

states, in which a lack of information predominates, and paraconsistent states, in 

which favorable and unfavorable evidence coexist in a relevant way, without forcing 

the system to produce unduly definitive conclusions. 
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Acting as a guardrail, the use of conservative certainty and contradiction 

thresholds prevented unclear queries from advancing to the retrieval and generation 

stages, functioning as a deliberate barrier against the spread of ambiguity throughout 

the inferential flow. The same mechanism validated the responses produced: the 

system not only generated an output but also evaluated whether it was acceptable 

considering the available evidence. When the degree of certainty fell below the 

threshold, the response was not treated as simply weak; it was flagged as potentially 

inadequate and communicated to the user as a result of insufficient or contradictory 

evidence. 

These mechanisms translated into concrete behaviors observed in the 

experiments. When faced with ignorance, the system reported that the question was 

outside its scope and avoided fabricated answers. When the question was unclear, it 

requested clarification rather than proceeding with an arbitrary interpretation. When 

there was high contradiction, it identified conflict between sources and marked the 

answer as hesitant or conditional, making competing interpretations explicit. In all 

these situations, inference guided by the Logic Eτ framework prevented decision 

collapse and transformed hesitation into useful information. Thus, instead of treating 

poorly formulated questions as noise, the system converted uncertainty into explicit 

action through cycles of meta-questions guided by propositions. 

Like any knowledge-based model, the proposal has limitations. Performance 

remains dependent on the quality and scope of the corpus used, and robustness in 

the face of queries outside the scope depends on continuous improvement of curation. 

Furthermore, the behavior of the system in real operating environments still needs to 

be investigated, especially regarding the dynamics of use by producers, linguistic 

variations, and integration with heterogeneous technological infrastructures. 

From the perspective of this dissertation, the results allow us to conclude that the 

system manages uncertainty but does not eliminate it. Even after optimizing the RAG 

pipeline and integrating Logic Eτ, a minority of responses remain close to ambiguous 

or contradictory zones. The difference is that these cases are no longer invisible: they 

become identifiable, traceable, and subject to conscious intervention, either through 

corpus curation or by adjusting the DSS operational parameters.  

Taken together, the results indicate that the overall objective was consistently 

achieved and that the specific objectives were addressed in a coordinated manner. 
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CHAPTER IV 

4 FINAL CONSIDERATIONS 

4.1. Conclusions 
 

The trajectory developed in this dissertation demonstrated that the integration of 

contextual generation and interpretation, retrieval of verifiable information, and 

structured representation of uncertainties and contradictions constitutes a consistent 

way to increase the reliability of decision support systems applied to intensive poultry 

farming. 

For intensive poultry farming, this approach broadens the scope of DSS by 

shifting the focus from strictly short-term operations and incorporating 

recommendations aligned with tactical and strategic levels. The ability to translate 

specialized technical knowledge into understandable responses, while maintaining 

explicit control over the uncertainties inherent in the production process, reinforces the 

usefulness of the system in an environment marked by informational complexity and 

the need for quick and consistent decisions. 

The results support practical implications and research developments. From an 

applied perspective, the dissertation indicates that it is technically feasible to offer 

poultry producers a conversational agent capable of answering technical questions in 

multiple domains, with explicit uncertainty and contradiction, provided that a curated 

knowledge base, fulfilling the general objective proposed for the work.  

In intensive production contexts, such DSS can operate as a complementary 

layer to existing management platforms, offering interpretive narrative, screening 

recurring questions, and support in reading technical documents, without attempting 

to replace the judgment of experts. 

From a scientific point of view, the research program outlines a concrete agenda 

that includes improving recovery mechanisms to mitigate situations in which the LLM 

compromises the quality of responses; rebalancing the knowledge base to increase 

accuracy in domain classification; systematic comparison with conventional RAG 

pipelines and classic DSS; and expanding the Logic Eτ framework to other agricultural 

and industrial sectors.  

This brings us to the central contribution of this work, which is to understand 

decision-making under uncertainty and contradiction not as an unwanted anomaly, but 
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as an ordinary condition of operation that must be modeled, quantified, and made 

explicit. 

 

4.2. Recommendations for Future Work 
 

For future work, promising directions include conducting field studies, testing with 

expanded knowledge bases, comparing the approach with other hybrid models, 

investigating adaptive mechanisms capable of adjusting certainty and contradiction 

thresholds based on query behavior, and exploring the integration of numerical data, 

environmental sensors, and textual evidence within unified decision-making cycles. 
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