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ABSTRACT

Poultry production has become increasingly complex due to environmental variability,
high-density farming, and sustainability demands, creating decision environments
marked by uncertainty, contradiction, and fragmented or domain-dependent
information. Conventional decision support systems (DSS) often fail to ensure
consistency and interpretability under such conditions. This research develops and
evaluates an integrative method that combines Paraconsistent Annotated Evidential
Logic ET (Logic ET), Retrieval-Augmented Generation (RAG), and Large Language
Models (LLMs) agents to enable resilient and explainable reasoning for decision-
making in poultry farming. The research followed a cumulative three-stage design: (i)
a systematic literature review identifying conceptual and technological gaps; (ii)
controlled experiments assessing the influence of RAG on LLM performance; and (iii)
the modeling, implementation, and validation of a conversational DSS integrating
Logic ET-based inference with a state-of-the-art large language model. Evaluation
based on semantic similarity, contextual relevance, and logical-evidential consistency
confirmed that the integrated architecture remained robust even under conflicting or
incomplete evidence. The study establishes Logic ET as a computational foundation
for trustworthy and resilient Al-based DSS, operationalizing it within a modern Al
framework that enhances explainability and governance in agricultural production

processes, particularly poultry farming.

Keywords: Paraconsistent Annotated Evidential Logic ET; Decision Support Systems;
Retrieval-Augmented Generation; Large Language Models; Poultry Farming;

Explainable Artificial Intelligence.



RESUMO

A produgéo avicola tornou-se progressivamente mais complexa devido a variabilidade
ambiental, a elevada densidade produtiva e as exigéncias de sustentabilidade,
configurando ambientes decisérios marcados por incerteza, contradicdo e
informacgdes fragmentadas ou dependentes de dominio. Os sistemas de suporte a
decisao (SSD) convencionais frequentemente ndo conseguem garantir consisténcia
e interpretabilidade nessas condi¢des. Esta pesquisa desenvolve e avalia um método
integrativo que combina a Légica Paraconsistente Anotada Evidencial ET (Ldgica ET),
a Recuperacao Aumentada (RAG) e agentes baseados em Modelos de Linguagem
de Grande Escala (LLMs), com o objetivo de possibilitar um raciocinio resiliente e
explicavel aplicado a tomada de decis&o na avicultura. A pesquisa foi conduzida em
trés etapas cumulativas: (i) revisdo sistematica da literatura para identificacdo de
lacunas conceituais e tecnoldgicas; (ii) experimentos controlados para avaliar a
influéncia da RAG no desempenho dos LLMs; e (iii) modelagem, implementagao e
validacdo de um SSD conversacional que integra a inferéncia Idgico-evidencial da
Logica ET a um modelo de linguagem de ultima geragao. A avaliagdo, baseada em
meétricas de similaridade semantica, relevancia contextual e consisténcia logico-
evidencial, confirmou que a arquitetura integrada manteve desempenho robusto
mesmo sob evidéncias conflitantes ou incompletas. O estudo consolida a Logica Et
como base computacional para SSD de inteligéncia artificial confidveis e resilientes,
operacionalizando-a em um arcabougo contemporaneo de IA que aprimora a
explicabilidade e a governanga em processos produtivos agricolas, com énfase na

avicultura.

Palavras-chave: Légica Paraconsistente Anotada Evidencial ET; Sistemas de
Suporte a Decisao; Recuperagdo Aumentada; Modelos de Linguagem de Grande

Escala; Avicultura; Inteligéncia Artificial Explicavel.:



UTILITY

This research investigates the integration of Artificial Intelligence and
Paraconsistent Logic in Decision Support Systems designed to address complex
decision-making challenges in intensive poultry farming environments characterized
by incomplete, ambiguous, and contradictory data.

Its contributions are expressed in three complementary dimensions: scientific,
productive, and social.

In the scientific domain, it expands knowledge on reasoning and inference in
advanced artificial intelligence by applying non-classical logics to augmented
generative models for the formal treatment of uncertainty and contradiction,
consolidating this integration as an architecture for knowledge-based decision support
systems.

In the agricultural sector, particularly poultry farming, it proposes an adaptive
approach embodied in a DSS designed for producers, capable of supporting the
optimization of production processes with greater quality, predictability, and
operational safety.

In the social dimension, the study reinforces sustainable practices, promotes
animal welfare, and supports regulatory compliance, generating direct impacts on food
security and sectoral governance.

These advances align with the global goals established by the United Nations
Sustainable Development Goals (UN SDGs) (United Nations General Assembly,
2015).

This research employs advanced artificial intelligence to address complex
infrastructure challenges and foster technological modernization and operational
resilience, contributing to SDG 9 — Industry, Innovation, and Infrastructure.

It enhances productivity and food security through environmental control and
precise husbandry management, supporting SDG 2 — Zero Hunger and Sustainable
Agriculture.

For SDG 13 — Climate Action, it provides mechanisms for rapid response to
unexpected events and for mitigating adverse environmental impacts.

By promoting efficiency and reducing waste in resource utilization, it supports

SDG 12 — Responsible Consumption and Production.



Furthermore, it supports SDG 15 — Life on Land, by ensuring animal welfare
conditions compatible with the physiological needs of poultry.

Finally, by enhancing transparency and accountability in production
management, promoting regulatory compliance and strengthening governance
standards, the research contributes to SDG 16 — Peace, Justice, and Strong
Institutions.

By articulating scientific advances, practical applications for the production
sector, and socio-environmental responsibility, this study transcends a purely
technological scope and contributes to consolidating a poultry production model that

integrates innovation, efficiency, and a strong commitment to sustainability.



CHAPTERI

1 INTRODUCTORY CONSIDERATIONS

This chapter provides a contextualization of the research, presenting the study’s

context and its interactions with various fields of knowledge. It also includes the

research rationale, objectives, methodology, and the structure of the thesis.

1.1 Introduction

Global animal protein production has consistently grown over the past decades

(Figure 1),

driven by the demographic and economic growth, urbanization, and

changes in dietary habits (Figure 2). It is estimated that this demand may rise by up to

70% by 2050, with poultry meat becoming the main source of animal protein
consumed worldwide (FAO, 2022; Mottet & Tempio, 2017; Berckmans, 2017).
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Figure 1. Global Meat Production, Last 30 Years (million tons)
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Figure 2. Global Per Capita daily Protein Intake, last 30 years (in g)
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This growth phenomenon is particularly significant in developing regions such as
Asia and South America (Figure 3), where the increase in per capita income has
favored more frequent consumption of animal-based products, especially poultry
(FAO, 2022; Mottet & Tempio, 2017; Berckmans 2009, 2017)

Figure 3. Global Per Capita Daily Meat Availability for Consumption (g/day), 2022

Source: Prepared by the author, based on FAOSTAT (2024).
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This accelerated growth in poultry production has led to significant structural
transformations in the production chain, with the consolidation of large-scale intensive
systems characterized by high density and increasingly shorter production cycles
(FAO, 2022; ABPA, 2024; Grzini¢ et al., 2023). Currently, about 92% of global poultry
production takes place in intensive systems (FAO, 2022; Mottet & Tempio, 2017;
Berckmans, 2009; Berckmans, 2017). Brazil exemplifies this process, being the
world’s largest exporter and the second-largest producer, with more than 50,000
integrated producers operating under strict sanitary and quality standards (ABPA,
2024). This model has enabled Brazilian production to grow by more than 1087% over
the past four decades, while exports have increased by more than 3040% (ABPA,
2024).

The increase in production scale, combined with the high density of flocks, poses
significant challenges to management, animal welfare, health, and environmental
sustainability. Inadequately controlled environments can compromise zootechnical
performance, food safety, and regulatory compliance (Curi et al., 2017; Hafez & Attia,
2020). Variables such as temperature, humidity, air velocity, gas concentration,
feeding conditions, management practices, and disease incidence interact
dynamically and interdependently, directly affecting bird health, welfare, and
productivity (Grzini¢ et al., 2023; Pereira & Naas, 2008; Martinez et al., 2021; Qi et al.,
2023).

To address these challenges, initiatives have emerged that integrate digital
technologies into the monitoring and management of animal production systems,
including poultry farming. From this perspective, intelligent systems have been applied
to detection and monitoring layers (loT sensors, computer vision, and acoustic
analysis), generating large volumes of environmental and behavioral data (Astill et al.,
2020; Zheng et al., 2021; Dewanto, Munadi & Tauvigirrahman, 2019; Lashari et al.,
2018). Recent advances also demonstrate the use of convolutional neural networks,
deep reinforcement learning, and support vector machines to identify behaviors,
stress, and clinical signs in birds (Halachmi et al., 2019; Raikov & Abrosimov, 2022;
Ojo et al., 2022).

Despite these advances, available solutions remain fragmented at the analysis
and decision-support stages. Specialized modules (such as vision, acoustics, and
climate) operate as technological silos, with low interoperability, limited incorporation
of contextual knowledge (flock history, zootechnical objectives, seasonality,

operational constraints), and restricted capacity to integrate information from
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heterogeneous sources. Moreover, the complexity of decision-making in intensive
poultry farming involves multiple decision domains, extending beyond environmental
control to encompass nutrition, health, welfare, and management, across operational,
tactical, and strategic levels (Zhai et al., 2020; Rossi, Caffi & Salinari, 2012). Factors
such as climate, market dynamics, and animal behavior make the decision-making
process uncertain and, in many cases, contradictory (Hamsa & Bellundagi, 2017;
Berckmans, 2009; Cheng, McCarl & Fei, 2022).

This fragmentation reflects a structural challenge already recognized in the field
of decision science: the dissociation between predictive modeling and the decision-
making process itself. Recent studies have highlighted the need to integrate symbolic
reasoning, contextual inference, and decision-oriented learning, consolidating a
“decision-focused” approach, in which the value of a model is assessed not only by its
predictive accuracy but by the quality of the decisions it supports (Mandi et al., 2023).

Consequently, the recommendations generated by these systems tend to be
locally effective but systemically disjointed, resulting in latency between detection and
action and difficulty in prioritizing trade-offs when signals are ambiguous. The
limitations imposed by this fragmentation become even more severe in the frequent
presence of incomplete information (sensor failures, misaligned time windows) or
contradictory data (divergent readings between sources, conflicts between model
outputs and field observations), creating a critical point for decision-making (Grzini¢ et
al., 2023; Hafez & Attia, 2020).

Specialized support constitutes the main resource for integrating information
from different decision domains within the production system. Technical consultants
play a relevant role in interpreting heterogeneous, and often, unprecise and
incomplete data and formulating practical recommendations, acting as mediators
between technological monitoring systems and decision-making in operations.

However, this type of support presents limitations that compromise its
effectiveness. First, it often relies on retrospective analyses based on historical data,
leading to reactive responses with limited predictive value in dynamic environments
(Lashari et al., 2018; Halachmi et al., 2019; Raikov & Abrosimov, 2022; Ojo et al.,
2022). Second, itinvolves high costs, which restrict accessibility for small and medium-
sized producers. In addition, it depends heavily on individualized expertise, which
introduces variation in the quality of recommendations and limits the scalability of the

model. Considering the intensive and complex nature of production systems, this
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approach proves insufficient to ensure agility, standardization, and resilience in real-
time decision-making.

In this context, there is a growing need to refine the Decision Support Systems
(DSS) currently in use so that they can integrate different sources of information,
including environmental, zootechnical, and operational data, as well as continuous
data generated by monitoring systems, into advanced analytical models capable of
producing reliable and actionable recommendations (Zhai et al., 2020; Curi et al.,
2017; Astill et al., 2020; Zheng et al., 2021; Liakos et al., 2018; Brugler et al., 2024).

To address the demands of intensive production, such systems must not only
operate in a way that provides timely responses but also maintain consistent
performance in scenarios characterized by uncertainty, contradiction, and
informational gaps, while demonstrating adaptability to different production conditions.
This requirement aligns with the contemporary movement toward the unification of
learning and decision-making, which seeks to replace the historical separation
between predictive models and decision mechanisms with integrated structures of
optimization and contextual reasoning (Mandi et al., 2023).

Thus, the research problem guiding this study seeks to investigate how Decision
Support Systems can be developed to integrate heterogeneous information and
maintaining consistency even in the presence of uncertainty and contradiction, thereby
overcoming the limitations of the solutions currently available in intensive poultry
farming.

In this context, the present research adopts as its theoretical and methodological
framework the integration of Paraconsistent Annotated Evidential Logic ET (Logic ET),
Large Language Models (LLMs), and Retrieval-Augmented Generation (RAG). Logic
ET provides a quantitative formalism capable of representing degrees of favorable and
unfavorable evidence while preserving the coherence of reasoning even under
conditions of contradiction or incompleteness (Abe, Akama & Nakamatsu, 2015).
LLMs, in turn, expand the capacity for knowledge representation and processing in
natural language, enabling the extraction and organization of information from
heterogeneous textual sources such as operational records, technical protocols, and
human interactions (Brown et al., 2020). RAG complements this structure by ensuring
the dynamic incorporation of updated contextual and factual evidence during the
inferential process (Lewis et al., 2021; Li et al., 2022). From this integration emerges
a theoretical and operational framework supported by three complementary

dimensions, logical-evidential inference, contextual processing, and semantic
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interpretation, which together enable consistent, interpretable, and adaptable

decision-making under conditions of uncertainty and contradiction (Mandi et al., 2024).

1.2 Justification

The advancement of Decision Support Systems (DSS) in animal production,
particularly in poultry farming, has been strongly driven by automation technologies,
statistical modeling, and machine learning. However, these models remain anchored
in paradigms of data consistency and completeness, which contrast with the realities
of actual production environments. In intensive poultry systems, information is often
uncertain, contradictory, and context-dependent, challenging traditional approaches
to modeling and inference.

In this scenario, the present research is justified by proposing an innovative
methodological approach aimed at the convergence of logical-evidential inference,
contextual processing, and semantic interpretation through the integration of Logic ET1
and LLMs with RAG, with the purpose of overcoming current challenges related to
decision-making in poultry production. This integration is not merely technical but also
conceptual: it proposes a new chain of computational reasoning grounded in logical-
evidential, contextual, and semantic integration, representing a relevant contribution
to the field of artificial intelligence applied to decision science and, more broadly, to
research on intelligent systems capable of operating under uncertainty and
contradiction. With this proposal, the study contributes to the development of
explainable, scalable, and adaptable systems aligned with the demands for efficiency
and sustainability in modern animal production.

From an applied perspective, the research is also justified by addressing a
concrete need in the poultry sector, where decision-making processes depend on
fragmented and often inconsistent data. The development of DSS capable of
processing and interpreting contradictory information offers potential gains in agility,
standardization, and reliability, reducing reliance on human consultancy and
expanding access to operational intelligence.

Beyond its technical and methodological relevance, the study is also justified
from a social and institutional standpoint, as it aligns with the Sustainable
Development Goals (SDGs) of the 2030 Agenda, contributing to the technological
modernization and operational resilience of production systems, promoting efficiency

and food security through process optimization, and strengthening transparency,
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traceability, and accountability in the use of intelligent technologies applied to poultry
production.

Finally, the research is further justified by its scientific and institutional
pertinence. Embedded within the research line “Quantitative Methods in Production
Engineering” at Universidade Paulista (UNIP), it contributes to advancing logical-

evidential modeling as a decision-support tool for complex and uncertain contexts.

1.3 Objectives

1.3.1 General Objective

The central objective of this master’s dissertation is to design the architecture,
develop, and evaluate a knowledge-based Decision Support System for intensive
poultry farming, capable of supporting resilient decision-making processes under

conditions of uncertainty and informational contradiction.

1.3.2 Specific Objectives

To achieve the general objective, this research establishes the following specific
objectives:

1.3.2.1 Critically examine the limitations and challenges of current DSS used in
precision poultry farming, with particular emphasis on environmental control.

1.3.2.2 Evaluate the extent to which recent Al technologies, particularly LLMs
and related techniques, can be integrated to strengthen knowledge-based decision
support in intensive poultry farming.

1.3.2.3 Develop and evaluate a knowledge-based DSS for poultry farming that
incorporates recent Al technologies and is structured as a conversational agent

resilient to uncertainty and contradiction.

1.4 Methodology

This master’s dissertation adopts an article-based format. The overall study is
structured into three interdependent works that address, sequentially and
complementarily, the different stages of investigation and validation of the proposed

model. This methodological choice aims to align the partial scientific outputs with the
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stages of the research process, ensuring logical continuity among the studies and
coherence with the defined objectives. The specific methodologies employed in each
article are detailed in their respective publications; therefore, this section presents the
unified design and methodological procedures that guided the entire investigation,

highlighting the scientific and operational structure common to all three studies.
1.4.1 Research Design and Methodological Structure

This master’s dissertation is characterized as applied in nature, experimental in
design, and exploratory in scope, employing a quantitative—qualitative approach within
an article-based structure. The study is applied because it aims to solve a concrete
problem: the inconsistency and fragmentation of data supporting technical decisions
in intensive production environments. It is experimental because it employs controlled
tests with measurable variables, and exploratory due to the originality of integrating
Logic ET1, LLMs, and RAG, a combination still at an early stage within Production
Engineering research. This methodological design ensures coherence between the
research problem and the adopted empirical strategy, enabling a progressive analysis
of theoretical and practical contributions across the stages of the investigation.

The object of study is the DSS resulting from the integration of Logic ET, LLMs,
and RAG, designed to operate under conditions of uncertainty and contradiction
typical of complex production systems. The phenomenon under investigation is the
process of logical-evidential inference and decision-making in fragmented and
imperfect informational contexts, while the empirical unit of analysis corresponds to
the decision-making processes related to environmental control and zootechnical
management in broiler farms.

The three articles that compose this master’s dissertation form an articulated and
cumulative methodological trajectory, in which each study plays a specific role within
the process of investigation and validation of the proposed model. The first article
conducts a critical analysis of the state of the art, mapping conceptual and
technological gaps in DSS applied to intensive poultry farming; the second performs
an experimental evaluation of the RAG technique, assessing its contribution to the
performance of LLMs in the domain of environmental control; and the third
consolidates the integrative model, formalizing it in logical-evidential and
computational terms and evaluating it according to criteria of consistency, accuracy,

and operational applicability.
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Table 1 summarizes the correspondence among the articles, their objectives,

and the resulting scientific outputs.

Table 1: Methodological structure of the master’s thesis.

Article Journal Status Objective Nature of the Scientific
Investigation Outcome

Decision Support Proceedings of Accepted 1.3.21 Systematic review Identification of
Systems for SIMPEP for and critical analysis theoretical,
Environmental Control in publication of the state of the art.  technological, and
Poultry Production: methodological gaps.
Trends, Advances, and
Perspectives
Enhancing Environmental AgriEngineering Published 1.3.2.2 Applied performance  Evidence on the
Control in Broiler (MDPI) in 2025 experiment and accuracy, relevance,
Production: Retrieval- comparative and applicability of
Augmented Generation evaluation of RAG in DSS.
for Improved Decision- LLM+RAG.
Making with Large
Language Models
A Decision Support Al- AgriEngineering Submitted 1.3.2.3 Logical- Functional DSS
Copilot for Poultry (MDPI) computational prototype and
Farming: Leveraging modeling, acceptance criteria

Retrieval-Augmented
LLMs and Paraconsistent
Annotated Evidential

implementation, and
experimental
validation

based on logical-
evidential inference

Logic ET to Enhance
Operational Decisions

Source: Prepared by the author.

This cumulative methodological trajectory demonstrates the evolution of the
research from theoretical formulation to experimental validation and applied model
development, ensuring coherence among the conceptual, empirical, and technological

stages of the study.

1.4.2 Methodological Procedures

The methodological procedures in this research are organized into four
complementary axes, encompassing activities from the review and critical analysis of
the literature to the empirical validation of the proposed model:

1.4.2.1 Review and Critical Analysis of the State of the Art: The first
methodological axis consisted of a systematic review and critical analysis of the
literature on DSS applied to intensive poultry farming, with emphasis on environmental
control approaches. This stage, corresponding to Article 1, aimed to identify
theoretical, technological, and methodological gaps, as well as to understand the
limitations of existing solutions in scenarios characterized by uncertainty and

contradiction.
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The review followed principles of systematic rigor: definition of descriptors,
inclusion and exclusion criteria, bibliometric analysis, and thematic categorization. The
results allowed the formulation of the research problem and the establishment of
conceptual and operational requirements for the proposed method.

1.4.2.2 Experimental Evaluation of Retrieval-Augmented Techniques: The
second axis, developed in Article 2, consisted of a controlled experimental stage
aimed at evaluating RAG as a strategic component for contextual query processing in
natural language—based decision systems.

Comparative experiments were conducted between language model executions
with and without RAG, assessing metrics of semantic similarity, contextual relevance,
and practical applicability. The results of this axis provided empirical evidence of
RAG’s potential to enhance LLM performance and served as the basis for
configuration and calibration decisions adopted in the subsequent stage.

1.4.2.3 Modeling, Implementation, and Validation of the Proposed Model: The
third methodological axis, corresponding to Article 3, encompassed the logical-
computational modeling, implementation, and experimental validation of the system
resulting from the integration of Paraconsistent Annotated Evidential Logic ET (Logic
ET), LLMs, and RAG.

In this stage, mechanisms for logical-evidential inference, computational
modules for contextual processing and knowledge base construction, as well as the
conversational decision-support agent responsible for semantic interpretation, were
defined. Validation was carried out based on criteria of logical-evidential consistency,
semantic accuracy, and operational applicability, demonstrating the feasibility and
robustness of the developed model.

1.4.2.4 Validity and Reproducibility Synthesis: This axis established procedures
to ensure internal, external, and construct validity, as well as the reproducibility of
results. Internal validity was controlled through the standardized experiments and
repeated runs; external validity was ensured by generalization across poultry decision
domains; and construct validity was verified through the alignment between the
principles of Logic ET and the decision-making phenomenon under uncertainty. All
codes, parameters, and datasets were documented and versioned in a public
repository to ensure traceability and reproducibility.

The empirical evidence resulting from these verifications is presented and

discussed in the subsequent chapters.
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Together, these four methodological axes, systematic review, controlled
experimentation, logical-computational modeling and validation, and synthesis of
validity, provide an integrated framework that ensures coherence, methodological

consistency, and reproducibility throughout the study.

1.4.3 Methodological Integration Among the Articles

The methodological integration among the articles stems from the logical and
cumulative linkage of their scientific purposes. Each study contributes in a distinct yet
complementary manner to the consolidation of the proposed method, forming an
incremental trajectory in which the outcomes of one stage redefine the conditions and
hypotheses of the next.

The first article establishes the conceptual and diagnostic framework of the
research, identifying theoretical and operational gaps that justify the need for a model
capable of formally addressing contradiction and incompleteness. Its findings not only
contextualize the problem but also define the evaluation criteria and performance
dimensions to be observed in the subsequent experimental phases.

The second article plays an intermediate instrumental role, translating the
identified gaps into testable hypotheses and experimental parameters. The controlled
evaluation provides empirical evidence of the behavior of language models when
exposed to heterogeneous data and generates quantitative and qualitative
foundations for the design of the following stage.

The third article represents the synthesis stage of the process, integrating the
logical-evidential foundations of Logic ET with the experimental evidence accumulated
in the previous phases. This integration results in the formalization of the model, its
computational implementation, and the assessment of criteria related to consistency,
accuracy, and operational applicability.

In summary, the methodological trajectory unfolds through the following
sequence: logical-theoretical foundation — review and diagnostic analysis (Article 1)
— component experimentation (Article 2) — modeling, implementation, and validation
of the integrative model (Article 3), ensuring epistemological continuity and

experimental rigor.

1.5 Structure of the Master’s Thesis
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This master’s dissertation is organized into four chapters, structured from the
conceptual framework to the empirical validation and final conclusions of the study.

Chapter | — Introductory Considerations, presents the contextualization of the
research theme, the rationale, the objectives, and the methodological design of the
research.

Chapter Il — Theoretical Framework brings together the conceptual and scientific
foundations that support the study, addressing intensive poultry farming, Decision
Support Systems, Paraconsistent Annotated Evidential Logic Et, and Artificial
Intelligence technologies based on Large Language Models.

Chapter Il — Results and Discussion contains the three scientific articles that
constitute the core of this work, each corresponding to a stage of the investigative
process: (i) critical analysis of the state of the art, (ii) controlled experimentation of the
RAG technique, and (iii) modeling and validation of the DSS integrating Logic ET and
LLM agents with RAG. It concludes with an integrative discussion that consolidates
the main findings and their theoretical and applied implications.

Finally, Chapter IV — Final Conclusions summarizes the research contributions,
limitations, and perspectives for future work, highlighting the methodological and

practical advances provided by the developed integrative model.
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CHAPTERIII

2 THEORETICAL FRAMEWORK

This chapter consolidates the theoretical and scientific foundations that support
the integration of Paraconsistent Annotated Evidential Logic ET (Logic ET), Large
Language Models (LLMs), and Retrieval-Augmented Generation (RAG) within the
scope of Decision Support Systems (DSS) applied to intensive poultry farming. This
integration, which constitutes the core of the research, underpins the development of
an inference method capable of operating under conditions of informational
fragmentation, contradiction, and incompleteness.

The theoretical framework is structured around four complementary pillars: (i) the
empirical context of intensive poultry farming and its decision-making specificities; (ii)
the conceptual and methodological evolution of Decision Support Systems in
Production Engineering; (iii) the formal structure of Logic ET for managing
contradictory or incomplete evidence; and (iv) the role of LLMs and RAG in expanding

contextual processing and semantic interpretation capabilities in intelligent systems.

2.1 Application Domain: Decision-Making in Intensive Poultry Systems

Intensive poultry farming constitutes the application domain adopted in this
research, serving as the empirical environment for the formulation and evaluation of
the DSS based on a theoretical-operational structure composed of three
complementary dimensions: logical-evidential inference, contextual processing, and
semantic interpretation. This context is characterized by high operational complexity
and by the interdependence among environmental, health, and zootechnical variables,
which impose on the decision-making process recurring conditions of fragmentation,
uncertainty, contradiction, and informational incompleteness (Curi et al., 2017; Hafez
& Attia, 2020; Grzini¢ et al., 2023; Qi et al., 2023).

Environmental control, as well as other domains of zootechnical management,
requires continuous and multivariate decisions involving numerous variables under
dynamic and often conflicting constraints. The simultaneous presence of multiple

information sources, with different levels of reliability and temporal alignment, makes
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the inference process particularly sensitive to the coherence of the available data
(Martinez et al., 2021).

In this context, DSS act as fundamental instruments for the integration and
interpretation of such information (Zhai et al., 2020; Rossi, Caffi & Salinari, 2012).
However, traditional solutions remain constrained by assumptions of data consistency
and completeness, reducing their ability to operate under ambiguous or contradictory
conditions, typical of intensive production systems (Hamsa & Bellundagi, 2017;
Berckmans, 2009; Cheng, McCarl & Fei, 2022).

These limitations have developed in parallel with the rapid advancement of
sensing and data analytics technologies, which have transformed the informational
infrastructure of modern poultry production. In recent vyears, technological
intensification in the sector has consolidated a highly automated and data-driven
production ecosystem. Several studies highlight the convergence of loT sensors,
wireless networks, and cloud analytics platforms as the core of precision poultry
farming practices, focused on the continuous acquisition of environmental, behavioral,
and performance data from flocks (Astill et al., 2020; Halachmi et al., 2019; Zheng et
al., 2021).

These systems comprise multiple functional layers such as detection, analysis,
and decision, which, when articulated, enable the monitoring of critical variables such
as temperature, humidity, ventilation, air quality, noise, lighting, feeding patterns, and
animal behavior. (Lashari et al., 2018). The continuous data flow captured by sensors,
cameras, and microphones is processed in cloud computing architectures and stored
in large-scale repositories such as data warehouses and data lakes (Wu et al., 2023).
These infrastructures support the application of machine learning, large-scale data
analytics, and expert systems to interpret patterns and support decision-making (Ojo
et al., 2022; McAfee & Brynjolfsson, 2012).

Although these approaches represent a significant advance, they remain
predominantly predictive and quantitative, lacking formal reasoning mechanisms
capable of handling contradiction, incompleteness, and evidence heterogeneity,
limitations that justify the adoption of decision systems based on logical-evidential
inference, as proposed in this study.

Thus, intensive poultry farming is used here not as the primary object of
investigation but as an empirical platform for assessing the effectiveness of a DSS
based on the integration of Logic ET, LLMs, and RAG. This choice is justified by its

suitability for representing complex decision environments in which informational
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heterogeneity, inconsistent evidence, and the need for resilient and operationally
actionable responses coexist (Zheng et al., 2021; Liakos et al., 2018; Brugler et al.,
2024).

From this scenario of limitations in current decision mechanisms arises the need

for support models grounded in logical inference, as discussed in the following section.

2.2 Decision Support Systems

Decision Support Systems have historically been conceived as tools for
formalizing analytical reasoning and structuring complex problems. The first
approaches, developed between the 1970s and 1990s, were predominantly based on
mathematical and heuristic models, emphasizing optimization, simulation, and
multicriteria methods. This generation of systems featured highly prescriptive
architectures, driven by explicit rules and stable data flows, which limited their
applicability to deterministic and relatively static environments (Elkady, Hernantes &
Labaka, 2024).

With the advancement of digitalization and the proliferation of repositories and
sensors, DSS evolved into data-driven approaches in which machine learning and
large-scale analytics assumed a central role. The data-driven paradigm transformed
data science into a core component of the decision-making process, enabling pattern
detection, event prediction, and probabilistic evaluation of alternatives. This transition
increased system autonomy and brought the field closer to what is now referred to as
Decision Intelligence (DI), integrating analytical reasoning, modeling, and
organizational action (Pratt, Bisson & Warin, 2023). Current DSS operate over
integrated data pipelines that combine multiple sources, preprocessing routines,
predictive models, and user-context—adapted interfaces (Elkady, Hernantes & Labaka,
2024).

More recently, emphasis has shifted from prediction to decision-making, giving
rise to a new generation of knowledge-based systems supported by artificial
intelligence. These models combine formal domain representations, such as
ontologies and rules, with adaptive learning mechanisms, promoting explainable and
auditable inferences. Within this context, the field has been repositioned under the
designation Human—Al Systems (HAIS), in which collaboration between human and
artificial agents becomes central to producing decisions that are more consistent,

interpretable, and governable (Storey, Hevner & Yoon, 2024). Empirical evidence
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indicates that LLMs are already capable of generating and evaluating strategies with
performance comparable to that of human experts, enhancing search, aggregation,
and evaluation capabilities, essential features for third-generation DSS (Csaszar,
Ketkar & Kim, 2024).

From an architectural standpoint, contemporary DSS follow a functional structure
composed of four interdependent layers: acquisition, processing, inference, and
interface. The acquisition layer integrates data streams from sensors, machines,
operational records, and external sources, while the processing layer performs
cleaning, temporal synchronization, integration, and data curation. The inference layer
combines machine learning models with decision rules and symbolic mechanisms,
fostering transparency and contextualization of recommendations. Finally, the
interface layer delivers diagnostics, explanations, and actionable recommendations.
This sequence, data, analysis, decision, and action, is widely recognized in agricultural
and livestock precision systems, reflecting the principles of modularization and
interoperability that underpin current Farm Management Information Systems (FMIS)
and Smart Farming platforms (Fountas et al., 2015; Wolfert et al., 2017).

The effectiveness of a DSS, however, fundamentally depends on the quality,
coherence, and integration of information. In agro-industrial contexts, heterogeneous
environmental, zootechnical, and economic data require metadata standardization,
granularity control, and the use of domain ontologies to stabilize meaning and ensure
consistency across modules (Wolfert et al., 2017; Zheng et al., 2021). The coherence
between data and inference is critical for the reliability of automated actions, as
integration failures directly affect the timeliness and quality of decisions (Berckmans,
2017; Norton et al., 2019).

The pursuit of interoperability and logical consistency has thus become a
structural requirement. Service-oriented architectures and data contracts enable
modular expansion without structural disruption, while versioning and traceability
standards ensure end-to-end coherence in the information flow. As a result, DSS have
evolved from prescriptive and isolated systems into integrated, knowledge-based
decision ecosystems aligned with the contemporary need for rapid, explainable, and

evidence-supported decisions.

Nonetheless, this evolution highlights a persistent limitation: although DSS have
significantly increased their capacity to process large data volumes and incorporate

adaptive learning, they still lack formal mechanisms capable of simultaneously
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addressing contradiction, fragmentation, and informational incompleteness, conditions
inherent to complex production systems. It is at this point that those paraconsistent
logics, particularly Logic ET, become relevant as formal structures capable of
preserving the coherence of reasoning even under uncertainty and conflict (Abe;

Akama & Nakamatsu, 2015), as discussed in the following section.

2.3 Paraconsistent Logic

Classical logic, since Aristotle, has been structured around the dichotomy of truth
and falsity and the principle of non-contradiction, according to which a proposition
cannot be both true and false simultaneously. This binary formalism, foundational to
mathematics and computation, proves limited for representing complex phenomena in
which uncertainty, gaps, and conflicting information coexist (Abe, Akama &
Nakamatsu, 2015).

As a response, non-classical logics emerged, designed to expand
representational and inferential capacity under conditions of incompleteness and
inconsistency. Among them, Paraconsistent Logic (PL) stands out for enabling the
treatment of contradictions without leading the system to ftriviality, that is, without
making every proposition logically derivable (Abe 1992; Abe; Akama & Nakamatsu,
2015; Akama & Da Costa, 2016).

Building upon PL, Abe developed the Paraconsistent Annotated Logic (PAL),
which introduced the concept of annotation: each proposition is accompanied by a
value expressing the degree of available evidence. This structure allows for the
representation of information that is partially true or false, marking a milestone in the
formalization of reasoning under uncertainty and serving as the foundation for
subsequent evidential formulations (Abe, 2011; Abe; Akama & Nakamatsu, 2015;
Akama, 2016; Inacio da Silva Filho, Abe & Torres, 2008).

2.3.1 Paraconsistent Annotated Evidential Logic ET

The Paraconsistent Annotated Evidential Logic ET is an extension of the PAL
that explicitly incorporates the treatment of favorable (u) and unfavorable (A) evidence,

both ranging within the interval [0, 1]. Each proposition p is represented by the pair (u,
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A), which simultaneously expresses the degrees of favorable and unfavorable
evidence associated with a given piece of information (Abe, 2011; Abe, Akama &
Nakamatsu, 2015).

Logic ET is structured around three complementary conceptual spaces:
e ET Lattice: defines an ordered set of pairs (u, A) within the unit square
[0, 11?2, where (M1, A1) < (M2, A2) if u1 < Pz and Ay = A,. This order expresses
evidential dominance and allows the application of infimum and
supremum operators. The canonical negation is given by ~(y, A) = (A, M).

This lattice constitutes the operational substrate for evidential inference.

Figure 4. Lattice Et with Partial Order
T - Inconsistent
(1,1)

F - False V - True
(1,0) (0,1)

1 - Paracomplete
(0,0)

Source: Adapted by the author based on Abe, Akama, and Nakamatsu (2015).
e USCP (Unit Square of the Cartesian Plane): provides a geometric

representation of the evidential lattice, allowing visualization of logical states

in a two-dimensional plane.
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Figure 5. USCP (Unit Square of the Cartesian Plane)

A
©0,1) (1,1)

QF-T | QT—F

QF— L QT—-V

QL —F QV-T
QL -V QV-L

1 \"
(0,0) (1,0) K,

Source: Adapted by the author based on Carvalho, Abe (2018).

The vertices represent the classical states, True (V), False (F), Inconsistent

(T), and Paracomplete (L), while the intermediate regions correspond to

quasi-states or transitional states, such as QV—-T, QV—1, QF-T, and

QF— L, which indicate tendencies in the balance of evidence (Table 2).

Table 2: Symbolic representation of extreme and non-extreme logical states in

Logic ET, including qua-si-states and transitional tendencies.

Symbol State
\% True
QV-T Quasi-true, tending to inconsistent;
QV—1 Quasi-true, tending to paracomplete
F False
QF->T Quasi-false, tending to inconsistent
QF—1 Quasi-false, tending to paracomplete
T Inconsistent
QT-V Quasi-inconsistent, tending to true
QT—F Quasi-inconsistent, tending to false
1 Paracomplete or Indeterminate
QL—-V Quasi-paracomplete, tending to true
QL—-F Quasi-paracomplete, tending to false

Source: Adapted by the author based on Carvalho, Abe (2018).
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e Diagram of Certainty and Contradiction Degrees: results from the nonlinear
transformation

T (W, A) = (Gee(M, A), Get(M, A)) = (U=A, u+A-1)

which projects the evidential space onto two orthogonal axes: the degree of
certainty (Gce) and the degree of contradiction (Gct). This transformation
defines the operational plane employed in inference and decision-making
processes, where extreme and quasi-states are interpreted in a graded
manner. It also allows the establishment of control limits that help the system
filter and stabilize decisions under uncertainty and contradiction: the Upper
Certainty Control Value (Vscc), Lower Certainty Control Value (Vicc), Upper
Contradiction Control Value (Vscct), and Lower Contradiction Control Value
(Viccet).

Figure 6. Diagram of Certainty and Contradiction Degrees

Vcfa

Source: Adapted by the author based on Abe, Akama, and Nakamatsu (2015).
Logic ET enables continuous reasoning across states of truth, falsity,

inconsistency, and paracompleteness, providing a formal foundation for logical-

evidential inference, one of the conceptual pillar of this work.
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2.3.2 Para-Analyzer Algorithm

The Para-Analyzer Algorithm (PAA) computationally implements the principles
of Logic ET. Based on favorable (u) and unfavorable (A) evidence, the PAA calculates
the degree of certainty (Gce = p — A) and the degree of contradiction (Get=pu + A - 1),
comparing them with control parameters (Vscc, Vicc, Vscct, Vicct) to classify each
proposition as true, false, inconsistent, or paracomplete (Carvalho & Abe, 2018).

This algorithm ensures stability and traceability in paraconsistent reasoning,
enabling computational systems to process uncertain or contradictory data without
compromising logical coherence, an essential requirement for Decision Support
Systems DSS.

2.3.3 Paraconsistent Decision Method

The Paraconsistent Decision Method (PDM) applies Logic ET to decision-making
problems. Information is structured into an evidence matrix, in which y and A values
represent the degrees of favorable and unfavorable evidence associated with
influence factors defined by domain experts. Based on these pairs, the method
computes Gce and Gct and uses the decision rules of the PAA to determine the logical
state of each alternative (Carvalho & Abe, 2018).

The PDM enables the integration of multiple criteria and sources of evidence
without requiring complete data consistency, making it suitable for complex production
contexts such as intensive poultry systems, where decisions must be made under
conditions of contradiction, uncertainty, and informational fragmentation.

Thus, Logic ET and its associated developments (PAA and PDM) constitute the
core of a framework for logical-evidential inference, whose integration with LLMs and

RAG is discussed in the next section.

2.4 Large Language Models and Retrieval-Augmented Generation

Early approaches to language modeling were relied on statistical methods such
as n-gram models and simple neural networks focused on word prediction. The Neural
Probabilistic Language Model (NPLM) introduced the concept of representing words
as continuous vectors, enhancing generalization capacity and marking the beginning

of distributed representations (Bengio et al., 2003).
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The consolidation of Transformer architectures, based on attention mechanisms,
replaced recursive and convolutional operations with direct connections among all
words in a sequence, enabling the capture of long-range dependencies and improving
training efficiency (Vaswani et al., 2017). Models such as word2vec and BERT further
refined this capacity by learning semantic and contextual relationships from large text
corpora (Mikolov et al., 2013; Devlin et al., 2019).

As scale increased, Large Language Models (LLMs) emerged, capable of
learning from few examples and dynamically adapting to context. This evolution
expanded generalization capabilities but also revealed important limitations, such as
the generation of incorrect information (hallucinations), the propagation of biases from
training data, and the lack of transparency in inference processes (Brown et al., 2020;
Lin, Hilton & Evans, 2022).

Purely generative models, relying solely on internal knowledge acquired during
training, face structural constraints that compromise reliability. Research shows that
increasing model scale does not guarantee higher precision or consistency, making it
necessary to adopt control and detection mechanisms such as uncertainty estimation
to identify potentially confabulated outputs (Farquhar et al., 2024; Lin, Hilton & Evans,
2022).

To mitigate these limitations, contextual learning strategies were developed,
including context windows, in-context learning, and few-shot prompting, which function
as temporary memory mechanisms allowing models to adjust responses based on
examples provided within the prompt. Although effective, these techniques remain
sensitive to example formatting and the positioning of relevant information, limiting the
use of extended contexts (Dong et al., 2024; Liu et al., 2024; Zhang et al., 2025).

The need for anchoring and internal coherence control led to the development of
Retrieval-Augmented Generation (RAG), which combines knowledge generation and
retrieval to improve factual accuracy. RAG introduces external, up-to-date information
into the model's context, allowing responses to be grounded in verifiable evidence
(Lewis et al., 2020). Complementary strategies such as self-consistency, comparing
multiple reasoning chains, and the ReAct method, interleaving reasoning and external
retrieval, further enhance reliability and interpretability in inferential processes (Wang
et al., 2023; Yao et al., 2023).

RAG is therefore a hybrid architecture that integrates parametric knowledge
embedded in the model itself with non-parametric knowledge retrieved from external

sources. Its operation consists of three main stages: retrieval, which locates relevant
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passages; re-ranking to optimize selection; and generation to produce the final
response grounded on the retrieved content (Lewis et al., 2020). Dense Passage
Retrieval (DPR) leverages vector representations to compare queries and documents,
outperforming traditional approaches such as BM25 in retrieval accuracy (Karpukhin
et al., 2020).

By grounding responses in verifiable evidence, RAG reduces hallucinations and
increases factual precision while enabling continuous knowledge updates without
retraining the base model. Experiments with internet-augmented models demonstrate
accuracy gains in open-domain question-answering tasks (Lazaridou et al., 2022;
lzacard et al., 2023).

These advantages explain the growing adoption of RAG in DSS and
conversational agents, which require reliable and auditable responses. In knowledge-
driven dialogues, internet-augmented architectures learn to issue retrieval queries and
condition response generation on the recovered material, integrating up-to-date
information and minimizing contradictions (Komeili, Shuster & Kizilkaya, 2022). Multi-
agent variants combine structured data (e.g., knowledge graphs) and unstructured
text, increasing evidence verifiability. Evaluation of such systems considers both
retrieval, through metrics such as nDCG@k, Recall@k, and MRR (Thakur et al.,
2021), and generation, measured by semantic similarity (BERTScore) and source
fidelity (faithfulness), following the AIS (Attributable to Identified Sources) framework
(Rashkin et al., 2023; Zhang et al., 2020).

Reducing hallucinations and bias in language models requires complementary
strategies acting at both training and inference stages. Key approaches include chain-
of-verification, which guides the model to review its own outputs; uncertainty
estimation, which flags potentially incorrect content; and alignment methods such as
Reinforcement Learning from Human Feedback (RLHF) and Constitutional Al, which
reduce biased or undesirable behavior. Evaluation frameworks like HELM propose
integrated metrics that jointly assess quality, robustness, and fairness in model outputs
(Dhuliawala et al., 2024; Farquhar et al., 2024; Christiano et al., 2017; Bai et al., 2022;
Liang et al., 2022).

Recently, explainability and auditability have become essential for the safe
application of LLMs in critical environments. The field of Explainable Al (XAl) aims to
make model reasoning more transparent through techniques that identify attention
patterns, salience, and relevance in generated text. Recent approaches focused on

source faithfulness highlight the need to verify whether responses are truly attributable
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to retrieved content, as established in the AlS framework (Zhao et al., 2024; Rashkin
et al., 2023; Wang et al., 2023). In RAG- or DSS-based systems, such practices
include the registration of citations, evidence excerpts, and query logs, reinforcing
traceability and regulatory compliance.

Finally, integrating LLMs with formal reasoning, especially neurosymbolic
approaches, has proven promising for improving coherence and interpretability. This
approach combines the statistical learning of language models with symbolic logic
structures, allowing formal constraints during inference and enabling the extraction of
interpretable rules (Garcez & Lamb, 2020). Notable examples include Logical Neural
Networks (LNN), which preserve first-order semantic relations (Riegel et al., 2020),
and DeepProblLog, which integrates neural networks with probabilistic logic
programming in continuous learning flows (Manhaeve et al., 2018). Other
architectures, such as Program-Aided Language Models (PAL), allow LLMs to
generate intermediate programs and delegate their execution to formal interpreters,
ensuring greater accuracy and verifiability of results (Gao et al., 2023).

In summary, contemporary challenges of LLMs focus on enhancing factuality,
reducing bias, ensuring explainability, and integrating formal reasoning mechanisms
that make responses more consistent, reliable, and auditable, conditions essential for
their trustworthy adoption in knowledge-based DSS.
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CHAPTER I

3 RESULTS

This chapter presents and discusses the results obtained from the three studies
that constitute the empirical core of the research. Each article corresponds to a stage
of the methodological trajectory described in Chapter | and progressively contributes
to the development and validation of the integrative model proposed.

The chapter is structured into three main subsections, each dedicated to one
of the articles comprising this master’s thesis, followed by an integrative discussion of
the results.

The final subsection consolidates the findings of the three studies, highlighting
their convergences, complementarities, and theoretical and practical implications,

thereby forming the basis for the conclusions presented in Chapter IV.
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3.1 Article 1 — Decision Support Systems for Environmental Control in
Poultry Production: Trends, Advances, and Perspectives

The first article, titled “Decision Support Systems for Environmental Control in
Poultry Production: Trends, Advances, and Perspectives,” was accepted for
presentation at the XXXII Symposium on Production Engineering (SIMPEP, 2025) and
will be published in the conference proceedings. The study was conducted by Marcus
Vinicius Leite, Jair Minoro Abe, Marcos Leandro Hoffmann Souza, and Irenilza de
Alencar Naas, affiliated with Universidade Paulista (UNIP) and Universidade do Vale
do Rio dos Sinos (UNISINOS).

The purpose of this study was to map and systematize the state of the art
regarding the use of DSS applied to environmental control in intensive poultry farming
systems. The investigation sought to understand how these tools have been employed
to support decisions in operationally complex contexts where environmental,
physiological, and production variables coexist (Berckmans, 2017; Li et al., 2020;
Neethirajan, 2025). As the first methodological stage of the research, the study served
a diagnostic and foundational role by identifying structural limitations of existing
solutions and establishing the conceptual requirements that guided the formulation of
the integrative model proposed in this master’s dissertation (Zhai et al., 2020; Brugler
et al., 2024).

The methodology followed a systematic literature review, conducted according
to the protocols of Kitchenham (2004) and the PRISMA, 2020 guidelines (Page et al.,
2021), ensuring traceability and rigor in the selection and analysis of evidence.
Searches conducted in the Scopus and Web of Science databases resulted in the
identification, screening, and selection of studies that met the established inclusion
criteria and composed the final corpus for analysis. The research questions were
structured using the PICOC logic (Rossi, Caffi & Salinari, 2012), encompassing the
identification of DSS types, decision levels, benefits, limitations, and emerging trends.
Information was organized and coded through predefined and emerging categories,
combining qualitative and quantitative analysis to produce a critical synthesis guided
by thematic patterns and significant variations. The full protocol, including search
terms and extraction spreadsheets, was documented and made publicly available

(marcusviniciusleite, 2025), ensuring transparency and reproducibility.
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The results revealed a field in consolidation, with accelerated growth since,
2020 and a predominance of journal publications, indicating both technical and
scientific maturity (Astill et al., 2020; Grzini¢ et al., 2023). Most systems were based
on embedded |oT architectures equipped with physical sensors and low-power
microcontrollers for continuous environmental monitoring and local inference using
machine learning, fuzzy logic, and neural networks (Curi et al., 2017; Liakos et al.,
2018; Zheng et al., 2021). Hybrid systems combining statistical modeling, symbolic
paradigms, and predictive techniques were also identified (Martinez et al., 2021; Zhai
et al., 2020). The majority of applications focused on short-term operational decisions,
such as ventilation, lighting, and climate control, while tactical and strategic systems
aimed at simulation and planning remain underrepresented (Hamsa & Bellundagi,
2017).

The analysis highlighted recurring benefits related to improved environmental
precision, process automation, animal welfare, and economic efficiency (Godinho et
al., 2025; Neethirajan, 2025). However, methodological and operational gaps persist,
limiting real-world applicability. These include the absence of validation in commercial
farms, sensor fragility under harsh environmental conditions, low interoperability
among subsystems, and dependence on continuous connectivity (Qi et al., 2023;
Hafez & Attia, 2020). Many DSS remain confined to passive monitoring functions,
lacking adaptive learning mechanisms or fault tolerance, which restricts their
effectiveness in contexts marked by uncertainty and contradiction.

At the same time, emerging technological trends indicate a transition toward a
new generation of DSS, more resilient, integrated, and semantically enriched.
Advances such as edge—-cloud architectures, fusion of physiological and
environmental data, use of smart sensors, and the incorporation of tinyML and
explainable Al techniques have expanded system autonomy and interpretability
(Berckmans, 2009; Zhai et al., 2020; Brugler et al., 2024). The early use of LLMs and
RAG suggests a movement toward systems capable of integrating numerical inference
and semantic reasoning, inaugurating a new paradigm of cognitive decision support

in intensive poultry farming.
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RESUMO:  OVER THE PAST DECADES, POULTRY PRODUCTION HAS INTENSIFIED
WORLDWIDE, DRIVEN BY THE GROWING DEMAND FOR ANIMAL PROTEIN. IN
BRAZIL, THE SECOND-LARGEST PRODUCER GLOBALLY, POULTRY FARMING
OPERATES UNDER AN INTENSIVE, LARGE-SCALE MODEL CHARACTERIZED BY HIGH
DENSITY AND SUBSTANTIAL PROCESS COMPLEXITY. WITHIN THIS CONTEXT,
ENVIRONMENTAL CONTROL IN POULTRY HOUSES PLAYS A STRATEGIC ROLE IN
ENSURING OPERATIONAL EFFICIENCY, ZOOTECHNICAL PERFORMANCE, ANIMAL
WELFARE, SANITARY SAFETY, AND REGULATORY COMPLIANCE. TO ADDRESS THESE
CHALLENGES, THE USE OF DECISION SUPPORT SYSTEMS (DSS) HAS INCREASED.
HOWEVER, THE LITERATURE ON THIS TOPIC REMAINS FRAGMENTED AND LACKS
SYSTEMATIZATION, WHICH HINDERS UNDERSTANDING OF THE FIELD AND THE
EVOLUTION OF RELATED SOLUTIONS. THIS ARTICLE PRESENTS A SYSTEMATIC
LITERATURE REVIEW BASED ON THE GUIDELINES OF KITCHENHAM (2004) AND
PRISMA 2020, AIMING TO MAP, CLASSIFY, AND ANALYZE DSS APPLIED TO
ENVIRONMENTAL CONTROL IN POULTRY FACILITIES. THE RESULTS PROVIDE A
COMPREHENSIVE ~ OVERVIEW OF THE FIELD, HIGHLIGHTING TRENDS,
PERSPECTIVES, AND LIMITATIONS. THE STUDY CONTRIBUTES BY SYSTEMATIZING
THE STATE OF THE ART, ADDRESSING DSS TYPES, THE PRODUCTION DECISIONS
THEY SUPPORT, THEIR BENEFITS AND CURRENT CHALLENGES, AND EMERGING
TECHNOLOGIES. THE FINDINGS ARE INTENDED TO SUPPORT THE DEVELOPMENT
OF MORE EFFICIENT AND SCALABLE SYSTEMS, FOSTERING THE ADVANCEMENT OF
KNOWLEDGE IN PRODUCTION ENGINEERING, POULTRY FARMING, AND DSS, AS
WELL AS PROMOTING MORE SUSTAINABLE PRODUCTION PRACTICES ALIGNED
WITH THE UNITED NATIONS SUSTAINABLE DEVELOPMENT GOALS (SDG) 2, 9, AND
12.

KEYWORDS: INTENSIVE POULTRY FARMING, DECISION-MAKING, DECISION
SUPPORT SYSTEMS, ENVIRONMENTAL CONTROL, DIGITAL TECHNOLOGIES
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1. INTRODUCTION

In recent decades, poultry farming has consolidated as the main source of animal protein
consumed worldwide, driven mainly by economic and population growth, urbanization, and
changes in dietary habits. This context has favored the expansion of intensive poultry
production systems. In Brazil, the world’s second-largest producer, this transformation is
reflected in large-scale integrated production models characterized by high density and
increasingly shorter production cycles (FAO, 2022; ABPA, 2024; MOTTET; TEMPIO, 2017,
BERCKMANS, 2017). This productive advancement imposes growing challenges on
environmental control in poultry houses, especially in the face of climate change. In this
scenario, Decision Support Systems (DSS) stand out by enabling decisions that promote stable,
safe, and reliable production environments.

Despite the relevance of the topic, the literature on computational tools for
environmental control in poultry production remains fragmented and poorly systematized,
making it difficult to compare approaches and identify trends. In view of this situation, this
article conducts a systematic literature review aiming to map, classify, and analyze the DSS
applied to environmental control in poultry farming. The adopted methodology follows the
guidelines proposed by Kitchenham (2004) and PRISMA 2020, employing the PICOC structure
to ensure traceability between research questions, extraction criteria, and analysis
(KITCHENHAM, 2004; PAGE et al., 2021).

As a contribution, the study provides a critical synthesis of the state of the art by
identifying the types of DSS employed, the decision levels involved, the reported benefits and
limitations, and the emerging technologies integrated into these systems. It advances the fields
of Production Engineering, poultry science, and DSS by guiding the development of solutions
compatible with the realities of intensive poultry production. From a social perspective, it
reinforces the role of innovation in promoting animal welfare and food security, aligning with
the United Nations Sustainable Development Goals (SDG) 2, 9, and 12.

This article is organized into sections as follows: Section 2 presents the theoretical
framework that guided the study; Section 3 describes the adopted methodology; Section 4
presents the obtained results; Section 5 discusses the findings; and Section 6 provides

conclusions and future directions.
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2. THEORETICAL FRAMEWORK

Global chicken meat consumption has shown consistent growth over recent decades,
driven by urbanization, rising per capita income, changes in eating habits, and the search for
lower-cost protein sources with reduced environmental impact compared to red meat. This trend
is particularly pronounced in Asian and South American countries, where increasing population
density intensifies demand. Projections indicate that the global demand for protein may grow
by up to 70% by 2050, with chicken meat expected to be the main driver of this expansion
(FAO, 2022; MOTTET; TEMPIO, 2017; BERCKMANS, 2009; BERCKMANS, 2017). This
growth has led to structural transformations in the poultry production chain. Producers have
begun to operate on larger scales, with bigger flocks and shorter, more intensive production
cycles. Brazil, the world’s largest exporter and second-largest producer, exemplifies this
configuration, with more than 50,000 integrated producers operating under strict sanitary and
quality standards (ABPA, 2024).

With about 92% of global production concentrated in intensive systems, operational
efficiency has come under increasing pressure from complex decisions often made under
conditions of uncertainty, variability, and time constraints (HAMSA; BELLUNDAG]I, 2017).
Factors such as climate, animal health, market dynamics, and bird behavior impose limits on
predictability and challenge the accuracy of decision-making (BERCKMANS, 2009; CHENG;
MCCARL; FEI, 2022). The main domains include environment (climatic and physical
variables), nutrition (feed supply and intake), health (early detection of clinical signs), welfare
(behavior and stocking density), and management (lighting, ventilation, and harvesting)
(GODINHO et al., 2025; LT etal., 2020; NEETHIRAJAN, 2025; KLOTZ et al., 2020). In terms
of scope, operational decisions relate to daily routines such as feeding and environmental
control, tactical decisions involve cycle and resource coordination, while strategic decisions
concern long-term planning, such as flock reconfiguration or the adoption of new technologies
(ZHAI et al., 2020; ROSSI; CAFFI; SALINARI, 2012).

Environmental control in poultry houses has become a critical function not only for
ensuring animal welfare and flock health but also for maintaining production efficiency, food
safety, and regulatory compliance (CURI et al., 2017; HAFEZ; ATTIA, 2020). Variables such
as temperature, humidity, gas concentration, and air velocity affect zootechnical performance
in an interdependent and dynamic way, requiring precise management and real-time, context-
aware decision-making (GRZINIC et al., 2023; PEREIRA; NAAS, 2008; MARTINEZ ct al.,
2021; QI et al., 2023).
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Given these challenges, Decision Support Systems (DSS) play a central role in intensive
poultry management by integrating environmental, operational, and zootechnical data into
analytical models capable of generating recommendations, simulations, and alerts (ZHAI et al.,
2020). By combining control algorithms, predictive models, alarm systems, and digital
platforms, these tools are applied to anticipate critical events, identify hidden patterns, and
suggest actions based on continuous monitoring (CURI et al., 2017; ASTILL et al., 2020;
ZHENG et al., 2021; LIAKOS et al., 2018; BRUGLER et al., 2024). By reducing subjectivity

and managing uncertainty more effectively, DSS structures decision-making through reliable,

interpretable, and actionable responses aligned with production practices.

3. MATERIALS AND METHODS

The methodology adopted in this systematic review followed the approach proposed by
Kitchenham and the PRISMA 2020 guidelines, which guided all stages from the formulation
of research questions to the analysis of findings (Kitchenham, 2004; Page et al., 2021).

3.1 Objectives and Research Questions
The main objective of this study was to identify, classify, and analyze Decision Support
Systems (DSS) applied to environmental management in poultry farming, focusing on their

functionalities, benefits, limitations, and technological trends.

TABLE 1 — Objectives, Research Questions, Methodological Strategies, and PICOC Elements

Specific Data Extraction PICOC
Research Question Analysis
Objective Elements
OE1 — Identify QP1 - What\lypcs f’f DSS Method sections; Functional and
have been used to support . .
the types of DSS . . system, architecture, | paradigm-based I, O
environmental control in L . .
used - or tool descriptions | classification
poultry farming?
OE2 - Classify | QP2 ~ What types of Description of Thematic
the types of production decisions ars system actions and categorization; cross-
N . supported by DSS in . L . > P,1,O, C
decision-making . . functionalities; analysis by tool type
X environmental control in . X L
supported - operational flows and decision scope
poultry farming?
QP3 — What benefits are
OE3 — Identify reported from the use of Results, discussion, | Thematic qualitative
the benefits DSS in environmental or conclusion coding; synthesis of I, Oy
obtained control in poultry sections grouped impacts
farming?
OES — Identify QPS5 — What technologies Open coding; I, O
technological and emerging approaches !(eyword_s ’ thematic grouping
introduction, and
trends and
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emerging are identified in the discussion sections;
approaches analyzed studies? emerging terms

Fonte: Elaborado pelos autores.

Based on this purpose, five specific objectives and corresponding research questions
were defined, structured according to the PICOC logic (Population, Intervention, Comparison,
Outcome, Context). Each question was associated with specific extraction and analysis
strategies, ensuring alignment between the collected data and the interpretive axes of the study,

as presented in Table 1.

3.2 Inclusion and Exclusion Criteria
The inclusion and exclusion criteria, defined according to the scope of the review, are described

in Table 2.

TABLE 2 — Inclusion and Exclusion Criteria Adopted in the Review

Inclusion Criteria Exclusion Criteria

« Peer-reviewed studies published in scientific * Do not focus exclusively on poultry farming as the
journals or conference proceedings. main subject.

« Application of DSS aimed at environmental * Do not address environmental control in poultry
control in poultry facilities. facilities.

« Explicit support for decision-making (monitoring, « Lack of a computational tool or method related to
prediction, recommendation, automation, etc.). environmental decision-making.

* Publications with full-text access, published « Literature review articles.

between 2010 and 2025, in English. « Full text not accessible.

Source: Prepared by the authors.

3.3 Information Sources and Search Strategy

The systematic search was conducted in the Scopus and Web of Science (WoS)
databases, selected for their broad coverage of peer-reviewed journals and their recognition in
reviews involving animal science and applied computing.

The search strategy combined three conceptual axes — poultry production,
environmental control, and decision support. The search terms and filters were adapted to the
syntax of each database, as shown in Table 3. In WoS, language and document type filters were
manually applied through the interface. The search was performed in June 2025, considering
publications from 2010 to 2025.

All records were exported in RIS format and processed using Zotero and Excel.
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TABLE 3 — Search Terms Used in Scopus and WoS

Scopus WoS
TITLE-ABS-K1'Y ( TS=(
("poultry” OR "broiler” OR "chicken ("poultry” OR "broiler" OR en")
AND ("environmental control” OR "environmental AND ("environmental control” OR
1 OR "climate ¢ trol" OR "the nitoring" OR "¢ te control" OR "thern
ort") ¢ )
AND ("dec ) pport” OR ) ! AND ("decision support” OR "decision-makin
OR "¢ S10N tem" OR "expe m" OR OR "decisio ¢ OR "¢ 1t S - OR
computations OR elligent em") computational model” OR "intelligent system")
) )
AND LANGUAGE (english) AND DOCTYPE (ar AND PY=(
OR ¢p) AND PUBYEAR > AND PUBYEAR <

Fonte: Elaborado pelos autores.

3.4 Screening and Study Selection Process

To ensure reproducibility and minimize judgment bias, the study selection followed a
structured multi-step protocol. Initially, all records retrieved from the databases were
consolidated and subjected to a deduplication process based on title, authors, and DOI, using
Zotero’s dedicated functionality. Traceability by database and extraction date was maintained.

Subsequently, titles and abstracts were screened, and studies meeting any previously
defined exclusion criterion were immediately removed. In ambiguous cases, a preventive
exclusion principle was applied, with justification recorded.

The entire process was documented in a structured spreadsheet containing study
identification, source database, decisions at each stage, exclusion justifications, and

methodological notes, ensuring transparency and control throughout all selection phases.

3.5 Data Extraction and Analysis

Data extraction was guided by the five research questions defined in the protocol (see
Section 3.1), focusing on the methodological aspects of the studies and the technical
characteristics of the analyzed solutions. Each included article was assigned a unique identifier
and its essential metadata were recorded: title, authors, year, journal or conference, country of
origin, methodological approach, and applied methods.

The extracted information was organized in a structured spreadsheet, with categories
initially derived from exploratory reviews and refined throughout the reading process. The
dataset is available for download in the GitHub repository (MARCUSVINICIUSLEITE, 2025).
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The analysis combined directed coding (predefined categories) and emergent coding
(categories identified in the data), allowing a critical synthesis guided by thematic patterns and
relevant variations. Ambiguities were documented without forcing artificial categorizations.
Analytical strategies included qualitative synthesis, thematic categorization, descriptive
frequency analysis, and interpretive cross-tabulation. Extracted evidence was organized in

accordance with the research questions (RQs).

4. RESULTS

This section presents the descriptive synthesis of the selected studies, organized

according to the categories defined in the review protocol.

4.1 Search, Screening, and Selection Results

The PRISMA flow diagram (Figure 1) summarizes the search and selection process.
Approximately 79% of the records were excluded during the initial screening due to thematic
misalignment, suggesting that the keywords used in the databases retrieved a large number of

tangential studies.

FIGURE 1 — PRISMA Flow Diagram of the Search, Screening, and Selection of Studies

Referencesidentifiedin
the databases(n=233)
Scopus: 141W0S92

dfor du
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Source: Prepared by the authors..

In the end, only 48 articles explicitly addressed the use of computational tools applied

to environmental decision support in poultry farming — a number that reinforces the scarcity
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of systematized research on the topic..

4.2 General Characteristics of the Studies

The chronological analysis revealed a growing concentration of publications starting in
2020, indicating the advancement of applied research on environmental decision support in
poultry farming. The predominance of journal articles over conference papers suggests greater
maturity and depth in the publications (Figure 2). The peak in 2024 indicates a possible
transition phase, marked by the consolidation of tools and increasing recognition in scientific
journals. As data for 2025 are still ongoing, it will be necessary to monitor the coming years to

confirm this trend.

FIGURE 2 — Distribution of Articles.

Articles by Year of Publication Articles by Country of Authors
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Source: Prepared by the authors.

Regarding the origin of the publications, Brazil leads with 14 articles, followed by India
(6), Indonesia (4), and the United States (3), forming the main research hubs in environmental
control for poultry farming. Among the countries with two studies, Mexico and Colombia
(Latin America) stand out, as well as Malaysia, China, and the Philippines (Asia). Countries
with one article include Hungary, the Czech Republic, Latvia, and Spain (Europe); Canada
(North America); Nigeria (Africa); Pakistan, Iran, Israel, and Saudi Arabia (Asia); and Ecuador
(Latin America).

The geographical distribution of publications aligns consistently with the main global
poultry production centers, according to FAO data (2024). The growth of Southeast Asia —
particularly India, Indonesia, Malaysia, and the Philippines — highlights the emergence of new
technological innovation hubs in the sector. Despite the concentration in key countries, the
geographical dispersion demonstrates an increasingly globalized interest in DSS. The frequency
analysis by category made it possible to map the dominant focuses of the studies from technical,

functional, and decision-making perspectives, as shown in Figure 3.
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FIGURE 3 — Distribution of the Analyzed Scientific Studies .
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5. DISCUSSION

This discussion follows the structure of the research questions (RQ1-RQ5), articulated

with the specific objectives (SO1-SOS5) and grounded in the extracted data.

5.1 Types of Decision Support Systems Identified (RQ1)

The review revealed a wide variety of DSS applied to environmental control in poultry
houses, which can be organized according to computational paradigms and associated
technologies. Embedded IoT architectures predominate, featuring physical sensors and low-
power microcontrollers designed for continuous data collection and automated response. In
general, these systems operate via edge computing, performing local inference based on
machine learning, fuzzy controllers, neural networks, or symbolic models. The combination of
these techniques results in hybrid architectures with different levels of autonomy.

A clear trend toward integrating multiple paradigms is observed—such as supervised
learning with non-classical logics or computer vision with deep neural networks—aiming to
improve adaptability under production variability. Most models concentrate on three main
applications: environmental risk prediction, anomaly detection, and intelligent actuation.

Although less common, rule-based expert systems, statistical models, and spatial optimization
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approaches for sensor layout design also stand out, particularly in contexts requiring
explainability or formal robustness.

Finally, although still incipient, the use of generative models and large language models
(LLMs) has emerged for semantic interpretation and text-based decision support, opening the
way for language-oriented approaches. Most tools remain in experimental stages but already

indicate a transition toward more sophisticated and adaptive DSS.

5.2 Productive Decision Scopes Supported by DSS in Poultry Farming (RQ2)

Decision-making in intensive poultry systems requires tools capable of operating across
multiple levels—operational, tactical, and strategic. The analyzed literature indicates an
excessive concentration on short-term decisions, revealing a gap in the application of DSS for
medium- and long-term planning.

Most solutions focus on continuous monitoring of environmental variables, integrated
with real-time alerts, remote visualization, and automated control of climate, ventilation, and
lighting. Machine learning—based classification models are recurrent, targeting the detection of
anomalies, thermal stress, and atypical patterns. Predictive systems expand this scope by
anticipating critical events, simulating environmental variations, and projecting zootechnical
impacts, with both operational and tactical applications.

There are also more advanced tools offering corrective action recommendations, mobile
sensory tracking, and automated inspection, as well as solutions for diagnostics, adaptive
planning, and optimization under climatic variability. In summary, while the predominant focus
remains on short-term operational decisions, there is a progressive expansion toward more

complex, tactical, and predictive functions.

5.3 Reported Benefits of DSS Use for Environmental Control in Poultry Systems (RQ3)

The analysis of the studies revealed consistent benefits from the adoption of DSS in
environmental control, organized into five main dimensions shown in Figure 4.

Accurate Environmental Management emerges as the central dimension, with emphasis
on risk prediction and the control of critical variables. Models based on machine learning,
neural networks, and advanced statistical methods demonstrated high accuracy in predicting
temperature, humidity, ammonia concentration, and pathogen prevalence, contributing to

thermal stability, gas control, and failure prevention.
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A analise dos estudos revela beneficios consistentes decorrentes da adogao de SSD no

controle ambiental, organizados em cinco dimensdes principais.na Figura 4.

FIGURE 4 — Overview of Benefits by Functional and Decision Scope.
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Fonte: Elaborado pelos autores.

Efficient Automation emerges as a key driver of operational efficiency, reducing human
error through systems integrated with sensors and actuators that perform real-time corrections.
In distributed or edge architectures, higher robustness and low latency were observed, even in
environments with limited infrastructure.

Regarding Assertiveness in Decision-Making at tactical and strategic levels, the
analyzed tools structure the decision process by combining environmental, physiological, and
production data with interpretive algorithms. Some solutions incorporate semantic models such
as LLMs, enhancing the intelligibility of recommendations. The emerging use of these models
for text-based decisions suggests an important conceptual shift: beyond traditional numerical
inference, new models are beginning to generate interpretable diagnoses or recommendations,
linking natural language processing and decision support.

Enhanced Animal Welfare appears associated with reduced thermal stress, stabilization
of critical conditions, and early detection of physiological or behavioral changes.

Finally, Economic Efficiency is evidenced through direct savings (energy, sensors,
labor) and gains in productivity, predictability, and sustainability. Low-cost IoT-based tools

have proven particularly effective in contexts with structural constraints.
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5.4 Challenges, Limitations, and Methodological Gaps in the Analyzed Studies (RQ4)

The review identified critical limitations that compromise the applicability and
scalability of the studied DSS in real production environments.

At the methodological level, the absence of field validation was predominant: many
models were tested only in controlled environments, with small samples, caged birds, and
simplified environmental variables, preventing generalization of the results. Tests conducted in
multiple environments, longitudinal analyses, or extensive statistical comparisons were rare.

At the technical-operational level, the main bottlenecks included sensor fragility in
harsh environments, strong dependence on network connectivity in regions with weak
infrastructure, frequent communication failures, and the use of low-cost sensors without
accuracy validation. Few systems incorporated fault tolerance, outlier detection, or loss-
compensation mechanisms. Persistent gaps were also identified in data standardization,
interoperability, information security, and economic feasibility. Some solutions required high
investment, specialized infrastructure, and technical training, limiting their scalability.

From a functional standpoint, most systems focused on passive monitoring, with
automated control either absent or limited to fixed thresholds and simple rule-based
mechanisms. The majority of systems ignored zootechnical variables, did not integrate learning
algorithms, and required direct human intervention.

Although environmental control is only one of the decision-making domains in poultry
farming, it has direct interdependence with others—such as nutrition, health, and welfare—
which demands integrated rather than isolated solutions. However, the analyzed systems rarely
articulated these interactions, limiting their systemic value in production management.
Integration with subsystems such as nutrition, health, or welfare was virtually nonexistent.
Discussions on regulatory compliance, privacy, and legal responsibility were also scarce.

These constraints hinder large-scale adoption and the establishment of comparative
frameworks. Overcoming them requires methodological advances, expanded functional scope,
field validation in commercial farms, and the development of resilient, interoperable, and
semantically integrable solutions. The analysis revealed that the effectiveness of DSS depends
less on isolated algorithmic sophistication and more on their ability to integrate with production
processes. Tools that fail to deliver interpretable, actionable, and context-compatible

recommendations tend to underperform in practice, even when technically promising.
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5.5 Technological Trends and Emerging Approaches (RQS)

The review identified a significant set of emerging technologies that expand the
functional scope of DSS and aim to overcome structural limitations. Edge—cloud architectures
using devices such as ESP32 and Jetson Nano have begun to perform local inferences with low
latency, even under limited connectivity. The adoption of these architectures has significantly
increased the resilience of environmental systems, demonstrating that intelligent automation in
poultry houses can be viable even outside major production centers. Applications featuring
automated control and sensors for sound, image, and environmental variables have gained
prominence, enabling real-time action.

At the sensory layer, advances include the use of wearable sensors, RFID with UHF
triangulation, thermal cameras, and integrated microphones. The fusion of physiological and
environmental data feeds more robust predictive models, incorporating new stress indicators
based on audio spectrograms and geometric descriptors. Structural innovations include
reinforced encapsulation and solar panels for greater autonomy.

In computational terms, new approaches have emerged, such as tinyML, adaptive fuzzy
logic, YOLOvV9, GELAN, kriging, SLAM, and hybrid zootechnical-statistical models.
Increasing connectivity with APIs, ERPs, dashboards, and mobile platforms has been observed,
along with georeferenced visualizations, SCADA systems, and blockchain solutions for
traceability.

Finally, conceptual proposals have emerged that explore LLMs integrated with RAG,
non-classical logic, explainable Al, and synthetic simulations. The integration of these semantic
models into environmental decision systems for poultry houses not only enhances the
interpretability of results but also strengthens user trust—highlighting a cognitive dimension
often overlooked in technology adoption. These advances signal a new generation of DSS: more

autonomous, adaptive, and semantically integrated into the production context.

5. CONCLUSIONS

The intensification of global poultry farming, particularly in tropical countries, has
generated a paradox: while increasing production scale and zootechnical -efficiency
requirements, it has also heightened risks associated with environmental variability.
Consequently, environmental control has evolved from a purely technical function to a strategic
one. In this context, the development of solutions capable of supporting facility management

under variability, uncertainty, and operational constraints has become essential.
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This systematic review analyzed 48 primary studies on Decision Support Systems (DSS)
applied to environmental control in poultry houses, following Kitchenham’s methodology
(2004) and PRISMA 2020 guidelines.

The findings revealed an expanding technological ecosystem with a trend toward hybrid
architectures that overcome the limits of isolated models by combining different computational
paradigms to achieve greater adaptability to environmental dynamics. These heterogeneous
solutions combined IoT, machine learning, non-classical logics, symbolic models, and neural
networks—converging on applications such as detection of critical fluctuations, microclimatic
instabilities, and behavioral changes, as well as intelligent control actuation. Most tools focused
on short-term operational decisions, but there are signs of progress toward more complex
tactical functions, indicating a gradual maturation of DSS toward more adaptive and proactive
systems. Reported benefits included improvements in accuracy, decision reliability, and
efficiency, with meaningful impacts on autonomy, animal welfare, and economic outcomes,
even under structural constraints.

Emerging trends reveal a technological transition: edge—cloud architectures, wearable
sensors, tinyML, adaptive fuzzy logic, explainable Al, connectivity with zootechnical and
production management systems, mobile platforms, and georeferenced visualizations point to
more robust and interconnected systems. The initial incorporation of LLMs, non-classical
logics, and synthetic simulations suggests the emergence of DSS that are more autonomous,
interpretable, and semantically integrated.

Despite these advances, important gaps remain. Most studies were limited to controlled
environments, with low replicability, restricted validation, and limited integration with other
dimensions of poultry production. Operational and methodological weaknesses persist, as well
as a lack of truly interoperable solutions applicable to commercial farms.

By systematizing the types, scopes, benefits, limitations, and trends of DSS applied to
environmental control in poultry farming, this study established a critical knowledge base that
supports technical and scientific progress in production engineering, poultry science, and
intelligent systems. The findings provide practical guidance for developing solutions suited to
the realities of intensive production systems and reinforce the strategic role of digital innovation
in promoting animal welfare, food security, and sustainability—in alignment with SDGs 2, 9,
and 12.

The consolidation of this field will depend less on isolated technological advances and

more on the realistic integration of these technologies into the operational conditions of actual
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production environments.

Future research should prioritize field validation of DSS across different poultry house
profiles and climatic conditions, the development of mechanisms for fault tolerance, resilience
to inconsistencies and data loss, and continuous learning strategies that enable effective
integration of DSS with other poultry production processes such as nutrition, health, welfare,
and logistics.

Equally promising are investigations that integrate automated inference with
explainable semantic models and generative artificial intelligence, enhancing user trust and the

overall effectiveness of decision-making.
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3.2 Article 2 — Enhancing Environmental Control in Broiler Production:
Retrieval-Augmented Generation for Improved Decision-Making with

Large Language Models

The second article, titled “Enhancing Environmental Control in Broiler
Production: Retrieval-Augmented Generation for Improved Decision-Making with
Large Language Models,” was published in January, 2025 in AgriEngineering (MDPI),
Volume 7, Issue 1, Article 12. The authors are Marcus Vinicius Leite, Jair Minoro Abe,
Marcos Leandro Hoffmann Souza, and Irenilza de Alencar Naas, affiliated with
Universidade Paulista (UNIP) and Universidade do Vale do Rio dos Sinos
(UNISINOS).

The study aimed to empirically evaluate the impact of the RAG technique on
the performance of LLMs in decision-support tasks related to environmental control in
broiler farms. This stage corresponds to the experimental phase of the research and
serves as the link between the theoretical diagnosis presented in the first article and
the integrative modeling developed in the third. The purpose was to determine whether
incorporating external evidence, retrieved from domain-specific knowledge bases,
could enhance the semantic accuracy, contextual relevance, and practical applicability
of LLM-generated responses (Lewis et al., 2020; lzacard & Grave, 2020; Li et al.,
2022).

The investigation was conducted within the scope of natural-language-based
DSS designed for the interpretation of technical and environmental control data in
poultry production. Under controlled conditions, the study tested whether adding a
document retrieval layer to a generation pipeline following the RAG paradigm could
mitigate known limitations of purely generative models, such as factual gaps,
inconsistencies, and hallucinations (Ji et al., 2022; Metze et al., 2024). The results of
this stage guided parameter and metric adjustments for the subsequent logical-
computational modeling phase, establishing RAG as a core component of the system
proposed in this master’s thesis.

The experiment was conducted using a set of technical queries developed from
international protocols and recommendations on environmental control in poultry
farming (Mottet & Tempio, 2017; Hafez & Attia, 2020). Each query was submitted to

controlled executions of state-of-art LLM (GPT 40) under two conditions: without and

57



with RAG. In the second configuration, the model accessed a domain-specific
knowledge base indexed by vector representations and retrieved by semantic
similarity using FAISS and LangChain (Reimers & Gurevych, 2019; Devlin et al., 2018;
Brown et al., 2020). The responses were evaluated using semantic similarity and
contextual relevance metrics, computed with Sentence-BERT embeddings, and
statistically analyzed through a paired t-test, following methodologies inspired by
comparative studies of retrieval and generation techniques (Guo et al., 2022; Reimers
& Gurevych, 2019). The entire experimental pipeline was implemented in Python,
employing the langchain, faiss-cpu, and sentence-transformers libraries, with all code
and datasets publicly released to ensure transparency and reproducibility.

The results showed significant performance improvements across all metrics.
Semantic similarity between responses and reference standards increased markedly,
accompanied by a substantial rise in contextual relevance (Lewis et al., 2020).
Responses generated with RAG were more accurate, complete, and auditable,
showing a marked reduction in hallucinations and inconsistencies (Ji et al., 2022;
Doshi-Velez & Kim, 2017). Although the retrieval layer slightly increased average
response time, the additional computational cost was offset by higher reliability and
traceability, attributes essential for decision-making systems in sensitive operational
contexts (Vaswani et al., 2017; Berckmans, 2017).

From a theoretical standpoint, the results demonstrate that RAG acts as an
evidential control mechanism by grounding responses in verifiable content and
constraining the model’s uncertainty space. Conceptually, this function parallels the
weighting structure between favorable and unfavorable evidence in the Logic ET (Abe,
2011; Abe & Carvalho, 2018), reinforcing the convergence between probabilistic
reasoning and logical-evidential inference. The integration of RAG with LLMs thus
enables a more coherent and verifiable inferential process, in which the model not only
generates responses but also reasons based on evidence, approaching analytical and
interpretable behavior.

These findings consolidate RAG as an intermediate layer between semantic
interpretation and logical-evidential inference, establishing the operational bridge that
supports the architecture proposed in this master’s thesis. Its adoption enables
natural-language-based decision support systems to operate with greater reliability,
traceability, and technical grounding, key features for the development of
conversational agents in intensive poultry farming and, more broadly, in productive

domains characterized by uncertainty and contradiction.
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Abstract: The growing global demand for animal protein, particularly chicken meat,
challenges poultry farming to adapt production systems through the adoption of digital
technologies. Among the promising advances in artificial intelligence (Al), large language
models (LLMs) hold potential to enhance decision-making in broiler production by sup-
porting environmental control through the interpretation of climatic data, the generation of
reports to optimize conditions, guidance on ventilation adjustments, recommendations for
thermal management, assistance in air quality monitoring, and the translation of simula-
tion results into actionable suggestions to improve bird welfare. For this purpose, the key
limitations of LLMs in terms of transparency, accuracy, precision, and relevance must be
effectively addressed. This study investigates the impact of retrieval-augmented generation
(RAG) on improving LLM precision and relevance for environmental control in broiler
production. Experiments with the OpenAl GPT-40 model and semantic similarity analysis
were used to evaluate response quality with and without RAG. The results confirmed
the approach’s effectiveness while identifying areas for improvement. A paired t-test
revealed significantly higher similarity scores with RAG, demonstrating its impact on
response quality. This study contributes to the field by advancing RAG-enhanced LLMs for
environmental control, addressing market demands by demonstrating how Al improves
decision-making for productivity and animal welfare, and benefits society by providing
small-scale producers with cost-effective and accessible solutions for actionable insights.

Keywords: retrieval-augmented generation (RAG); GPT; large language model (LLM);
smart poultry farming; precision livestock farming

1. Introduction

Global demand for animal protein, particularly poultry, has dramatically increased
due to economic growth and changing dietary preferences, especially in developing regions
across Asia and South America. As incomes rise, diets shift toward more frequent animal
product consumption, a trend expected to drive a 70% increase in demand by 2050 [1-3].
This growth places immense pressure on the livestock sector to scale production while
maintaining quality and safety standards. In response, the poultry industry has adopted
intensive farming practices, where high-density production is essential for meeting de-
mand. Intensive poultry farming now accounts for approximately 92% of global poultry
production, with countries like Brazil exemplifying this shift through large-scale, integrated
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systems involving over 50,000 producers who follow strict health and safety standards
regulated by large corporations [1-4]. While necessary, this transformation to high-density
production introduces new challenges in managing animal health, welfare, and environ-
mental conditions. High-density systems require strict biosecurity and environmental
management to prevent disease, maintain productivity, and comply with complex animal
welfare standards. Effective environmental control is vital for optimizing growth and
feed conversion efficiency while ensuring sustainable production practices. The poultry
industry has increasingly turned to smart poultry farming, a subset of precision livestock
farming (PLF) that utilizes digital technologies to automate and enhance monitoring and
management processes to address these challenges. This approach meets modern poultry
farming’s rigorous demands by improving productive efficiency, promoting animal welfare,
and supporting regulatory compliance [1,3,5-8].

In smart poultry farming, PLF systems typically perform three main functions: de-
tection and monitoring, data analysis, and decision-making. Detection and monitoring
technologies, such as IoT-based environmental sensors, gather extensive data on critical
parameters within the poultry house environment, including temperature, humidity, air
speed, and gas concentrations. While advancements in detection and monitoring are con-
siderable, the sheer volume of data produced presents significant challenges in the stages
of analysis and decision-making. Transforming this raw data into actionable insights that
producers can use for real-time adjustments is complex, often requiring advanced analytical
tools and expertise that may not be readily accessible to producers [7-11].

Previous work has demonstrated significant advancements in integrating machine
learning for real-time health and welfare monitoring in poultry farms, highlighting the
critical role of data-driven insights in precision livestock management. For example,
computer vision systems have been employed to monitor and predict broiler behaviors
and recognize stress-related conditions using technologies such as convolutional neural
networks (CNNs) and deep reinforcement learning. Additionally, Al techniques like neural
networks and support vector machines (SVMs) have been applied to analyze poultry
vocalizations and behaviors, achieving high accuracy in classifying activities and detecting
health or welfare issues [12-14]. Despite illustrating the potential of machine learning to
address key challenges in poultry farming, these efforts have focused mainly on isolated Al
applications with limited exploration of contextual knowledge to enhance decision-making,.
Consequently, they fall short of adequately addressing the complexities of analysis and
decision-making stages, which often require sophisticated tools and expertise that are not
readily accessible to producers [14].

The current approach to addressing these challenges relies on expert consultants who
analyze data, respond to producers’ inquiries, provide guidance, and support decision-
making. While these specialists play an important role in interpreting complex datasets
and delivering tailored recommendations, their services are often expensive, limiting ac-
cessibility for small-scale producers. Moreover, consultancy typically relies on historical
data, resulting in outdated insights that reduce the efficiency and effectiveness of recom-
mendations, particularly in the fast-paced environment of poultry farming [10-15]. These
limitations underscore the need for innovative solutions to enable real-time, cost-effective,
and accessible decision-making support for producers.

To address these challenges, large language models (LLMs) are a promising technology
with significant potential to generate insights from extensive textual data, leveraging deep
learning and natural language processing (NLP) techniques. Built on the Transformer archi-
tecture, LLMs—such as OpenAl's GPT, Google’s BERT, and Meta’s LLaM A—incorporate
attention mechanisms that enable efficient contextual understanding of complex linguis-
tic datasets [16-18]. These capabilities allow LLMs to summarize documents, generate
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reports, and answer questions, transforming raw data into intuitive insights supporting
decision-making across healthcare, education, finance, agriculture, media, and scientific
research [19-22].

In environmental control for broiler production, LLMs can support producers in
environmental control activities such as monitoring climatic variables by analyzing and in-
terpreting real-time data generated by sensors (e.g., temperature, humidity, and gasses) and
producing automated reports with recommendations. They can also assist in ventilation
control by diagnosing problems, interpreting sensor data, and suggesting possible causes
based on known patterns. They act as a configuration assistant that guides producers in
natural language on adjusting fans and evaporative panels based on environmental data
and best practices. Additionally, LLMs can aid in heat and cold management by provid-
ing suggestions and recommendations to optimize thermal management (e.g., adjusting
curtains or fan intensity) using analyses of environmental conditions and historical data.
They can support air quality analysis by interpreting gas concentration readings, issuing
alerts for unsafe levels, explaining how gas levels impact bird health and performance,
and providing solutions based on best practices, as well as generating automated reports
on air quality, linking ammonia or carbon dioxide levels to environmental conditions.
Finally, LLMs can assist producers in operational adjustments by interpreting and trans-
lating simulation results and offering detailed suggestions on priority actions to improve
environmental conditions.

Despite their promise, LLMs face substantial limitations that hinder their applicability
in critical domains like environmental management in broiler farming. Their “black box”
nature limits transparency, reducing user trust, particularly where verifiable justification
is required. Additionally, LLMs often lack contextual specificity, generating generalized
responses that fail to address the unique conditions of production sites. This limitation
becomes more pronounced in rapidly evolving fields, as models trained on static datasets
may provide outdated or irrelevant information. Finally, another critical concern is the
generation of hallucinations, where LLMs produce plausible but incorrect responses, further
undermining reliability [20,22,23].

To mitigate these shortcomings, techniques such as retrieval-augmented generation
(RAG) and prompt engineering have been proposed [24,25]. In the RAG approach, a ‘smart
retriever” technology gathers data from external knowledge bases and the user’s query to
create enriched input (Figure 1). The LLM then leverages this input to generate accurate,
context-sensitive responses [26-28]. RAG proposes to enhance LLMs by integrating a
retrieval mechanism that provides relevant and up-to-date information during response
generation. This approach aims to improve transparency, mitigate traditional models ‘black

box’ limitations, and address key challenges such as outdated training data, hallucinations,
and limited accuracy [26-33].

User Query Retrieval Phase

Initiation

Augmentation
Phase

E> Generation Phase

*The LLM
synthesizes a
response using

*The user *The system *The system
submits a searches an combines
query seeking external retrieved data

information. database for with the
relevant data. original query.

the augmented
Ix’l?’lll.

Figure 1. Schematic of the RAG Process Flow. Source: the authors.

However, RAG performance relies on the quality and relevance of the retrieved data,
and maintaining updated databases remains resource-intensive. Scalability is another
challenge, as computational costs and response times can limit real-time applications
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despite ongoing advancements in storage and retrieval mechanisms to improve their
efficiency and reliability [26,30].

Given these considerations, this study employs an experimental design to investigate
whether the RAG technique enhances the precision and relevance of LLM-generated
responses for environmental control in broiler poultry farming. We hypothesize that RAG
will improve LLM performance by providing contextual information, enabling producers
to make informed decisions. The research framework ensures reliable conclusions through
controlled variables and reproducible methodologies.

This study contributes to science by advancing RAG-enhanced LLMs for environmen-
tal control, demonstrating how Alimproves the precision and reliability of decision-making
in critical applications such as poultry farming. It addresses market demands by provid-
ing a practical framework that supports the poultry industry in enhancing productivity,
animal welfare, and regulatory compliance. Additionally, it benefits society by bridging
the knowledge gap for small-scale producers, offering cost-effective, accessible, and ac-
tionable insights to improve operations without requiring expert consultancy or advanced
technical expertise.

2. Materials and Methods

This study employs an experimental design to assess the impact of the RAG technique
on the quality of responses generated by an LLM. By introducing RAG as a variable, the
experiment measures its effect on the semantic similarity index, quantifying the responses’
accuracy and relevance. Responses with and without RAG are compared under controlled
conditions to evaluate how contextual augmentation influences semantic alignment.

To achieve this, the methodology is structured into three main phases (Figure 2):
database creation, experimental execution, and comparative analysis. These phases evalu-
ate the effectiveness of RAG in improving the precision and relevance of LLM-generated
responses within the domain of environmental control in broiler poultry farming,

Database Creation Experimental Comparative Analysis
sSelection of Articles: Execution ) :::lﬂzzsmmmw
sDatabase Construction Rt.eslll)ons('iecfelnerahon R
ePrompting and Data ~ |—> with and without S Asr;cl.t;n::en::l arity
Generation RAG )

*Statistical Analysis

*Alignment Check *Execution of Prompts

Figure 2. Schematic flow of the research approach. Source: the authors.

The structured methodology, including tools, datasets, and computational frameworks,
supports the replication of this experiment.

2.1. Technologies

We selected Python version 3.13 for this experiment due to its versatility, extensive
library ecosystem, and strong support for NLP and machine learning applications. Lla-
malndex and LangChain were adopted to implement RAG and non-RAG models. At the
same time, FAISS was used to store, index, and retrieve high-dimensional vectors efficiently,
enabling fast and accurate retrieval of relevant information to enhance the RAG process.
Additionally, we utilized OpenAl’s ChatGPT-40 model, recognized for its state-of-the-art
natural language understanding and generation capabilities and its compatibility with
RAG frameworks to improve response accuracy [19].
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2.2. Database Creation

The database aims to organize and store all relevant information necessary for exe-
cuting all experiment phases to evaluate RAG's effectiveness in improving the response’s

accuracy.

2.2.1. Selection of Article

Initially, we conducted a targeted literature review to identify recent studies on envi-
ronmental control in broiler poultry farming. We used the following query string in the
Scopus and Web of Science databases to identify relevant studies on environmental control

in broiler production:

TITLE-ABS-KEY (“broiler chickens” OR “broiler production” OR “broiler houses”
OR “poultry house” OR “broiler chicken barns”) AND (TITLE-ABS-KEY (“environmental
control” OR “environmental management” OR “climate control” OR “air quality”) AND
TITLE-ABS-KEY (“ventilation” OR “temperature” OR “humidity” OR “gas emissions” OR
“NH3” OR “ammonia” OR “CO,"” OR “carbon dioxide” OR “CO” OR “carbon monoxide”
OR “H,S” OR “hydrogen sulfide”) AND TITLE-ABS-KEY (“welfare” OR “comfort” OR
“performance” OR “productivity”)) AND PUBYEAR > 2019 AND PUBYEAR < 2023 AND
(LIMIT-TO (SUBJAREA, “AGRI”) OR LIMIT-TO (SUBJAREA, “VETE”) OR LIMIT-TO

(SUBJAREA, “ENVI”)) AND (LIMIT-TO (LANGUAGE, “English"))

This query is structured to capture articles focused on broiler chicken production
(including terms like “broiler houses” and “poultry house”) with a strong emphasis on
environmental control aspects (e.g., ventilation, temperature, humidity, and gas emissions).
It also targets research on animal welfare, performance, and productivity, reflecting the
multi-dimensional impacts of environmental factors on broiler farming. The search is
limited to studies published between 2020 and 2023 and includes relevant subject areas:

agriculture and veterinary and environmental science.

The cut-off date was set because the GPT-40 model was trained with data up to
2023 [16]. This limitation was intentionally established to avoid creating a scenario where
the RAG approach would naturally perform better, as the LLM would not have access
to articles published beyond 2023. By excluding more recent materials, the comparison

ensures a fair evaluation of RAG’s effectiveness.

We selected a sample of the ten most-cited articles from the search results. This
citation-based sampling approach ensured that our dataset included high-impact studies
widely recognized within the field, likely to offer comprehensive and relevant insights into

environmental control in broiler production.

Our targeted search identified the ten most-cited articles on environmental control in
broiler farming to form our dataset. Table 1 lists these selected articles, which serve as the

foundation for evaluating the effectiveness of RAG in enhancing response accuracy.

Table 1. Selected sources, article identification (DOI), and the number of citations received.

Source Digital Object Identifier (DOI) Cited by
Bist et al. [34] 10.1016/j.jenvman.2022.116919 52
Bloch et al. [35] 10.1016/j biosystemseng.2019.08.011 28
Costantino et al. [36] 10.1016/j.biosystemseng.2020.01.002 25
Costantino et al. [37] 10.3390/ani10091539 24
Ahmadi Babadi et al. [35] 10.1016/j.compag.2021.106677 21
Lietal. [39] 10.3390/ani10122252 21
Al Assaad et al. [40] 10.1016/j.biosystemseng.2021.01.002 18
Soliman et al. [41] 10.17582 /JOURNAL.AAVS/2020/8.9.997.1008 17
Peng et al. [42] 10.1016/j.psj.2021.101587 15

Source: the authors.

64




AgriEngineering 2025, 7, 12

60f15

2.2.2. Database Construction

We created a structured database based on scientific articles about environmental
control in broiler chicken farming. This database stored all the necessary information to
evaluate the effectiveness of RAG in improving response accuracy (Table 2).

Table 2. Database columns.

Column Description
Article Citation Identifies the source of the article.
Page Number Specifies the page from which the question was derived.
Full Text of the Page  Contains the full text of the page used to generate the question.
Question Contains the question derived from the specified page.
C Provides an interpretive response that captures the implied
orrect Answer

meaning within the context of the text.
Original Text
Answering the Extracts the direct answer as stated in the article.
Question

2.2.3. Prompting and Data Generation

To generate questions that would be answered by the LLM both without and using the
RAG technique, we created questions using each of the selected articles. For this purpose,
we utilized OpenAl’s ChatGPT-40 based on the GPT-40 model.

We developed a set of tailored prompts to generate questions from each article. The
primary prompt outlined the task’s objective, specifying that the questions be generated
from scientific articles according to specific criteria. First, they should be relevant to broiler
producers, addressing genuine concerns, challenges, or curiosities related to environmental
control in poultry farming. Second, the questions should align with the page content,
ensuring they can be answered using the information explicitly or implicitly available on
the specific page. Additionally, the questions should be clear, simple, concise, and free
of overly technical jargon while maintaining accuracy and professionalism. A practical
focus should also be emphasized, prioritizing actionable information producers can use
to improve farm management or decision-making. To ensure broad applicability, the
questions should avoid references to paper-specific terminology, methodologies, or findings,
instead generalizing the content into a form relatable to the producer’s context. Finally,
the questions should be designed to encourage meaningful responses through open-ended
exploration or contextualizing specific issues. Adhering to these guidelines ensured that
the generated questions were realistic, practical, and aligned with the intended purpose of
evaluating LLM performance in addressing practical queries.

The article input prompt provided the scientific article in PDF format. Finally, the
iterative question-generation prompts repeated for each page to create a question for each
page in each article.

An initial set of 133 questions was generated by these prompts and was saved in
the experiment database. The results reflect the state of the Scopus and Web of Science
databases as of October 2024, when the searches were executed.

2.2.4. Alignment Check of Generated Questions

We checked the adherence of each generated question with the established guidelines
to ensure that they aligned with the intended purpose of evaluating the LLM's performance
in dealing with practical questions. At the end of this process, a set of 100 questions was
selected for the experiments.
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2.3. Experimental Execution: Response Generation with and Without RAG

To evaluate the performance of the GPT-40 model in terms of responding to the
100 queries related to environmental control in broiler poultry farming, we developed a
Python-based program using advanced NLP techniques and the RAG framework (Figure 3).
The program, built on the LangChain framework, facilitated the comparison of responses
generated with and without RAG to analyze the impact of contextual information on
response accuracy.

2

Analysis of
Database

Id  Generated Question

GPT-Generated Responses

Reference Answer

How can poultry producers Poultry and indoor air qualty by sustainable | ok ok
maintain optimal thermal ventiiation designs that utilize passive cooling techniques such as direct evaporative cooling (DEC). This includes

and indoor air quality | ensuring in between 20-24 *C and relative humidiy levels stay within 50-70%. Additionally,
for their flocks in hot climates? effoctive air distrib , such as mixed tunnel ventilation,

dew-point indi

cooling (DPIEC) system over &

direct evapora

system in poultry houses?

What are the

What are the benefits of using 8

Tike COZ and NHS3 to safe levels.

SampleThe dew-point indirect evaporative cooling (DPIEC) system provides several advantages over the direct
evaporative cooling (DEC) system, including: Greater Cooling Capacity: DPIEC can cool the supply air below its
wet bulb temperature without increasing moisture levels, making it more effective in high humidity conditions.
Lower Supply Flow Rate: It can achieve the required cooling and indoor air quality (1AQ) at a lower air supply flow
rate, which reduces energy and water consumption. improved Thermal Sensation: Studies have shown that
DPIEC enhances bird: more DEC, particularly during hotter months.

rect evaporative

tive cooling (DEC)

y

3 The levels for maintaining optimal conditions for Laying hens in 8 poultry house are ok ok
Selected Question GPT-40 Results Similarity
Generated Question with RAG with RAG

How can poultry producers maintain optimal thermal Poultry producers can maintain optimal thermal 0,951332211494446

environments and indoor air quality for their flocks in environments and indoor air quality for their flocks in

e [ e s
Reference Answer without RAG without RAG

Pouttry producers can maintain optimal thermal Maintainng optimal thermal and

and indoor air quality by Indoor air quality for poultry in hot climates can be
sustainable ventilation designs that utilize passive challenging but is crucial for the birds’ health,

Figure 3. GPT-40 and RAG implementation user print screen interface. Source: the authors.

The evaluation involved generating responses for each query under two distinct
conditions. In the first condition, without RAG, the model was provided with only the
question and minimal guidance (basic prompt). In the second condition, with RAG, the
model received both the question and the full-text page containing relevant contextual
information (contextual prompt).

To implement the system, we used a two-step pipeline. First, we created a vector
store using the FAISS library, where documents were converted into dense embeddings
via OpenAl’s embedding model to enable efficient similarity-based retrieval. Second, we
constructed a conversational chain by integrating the GPT-40 model with the retrieval
mechanism and a memory module. The retrieval system fetched relevant documents from
the vector store based on user queries, while the memory module preserved dialog context
across multiple interactions.

The generated responses were stored in the database for further analysis. Each re-
sponse was recorded in one of two dedicated columns: response_without_RAG and re-
sponse_with_RAG. This structured approach facilitated a direct comparison between the
two types of responses, allowing subsequent steps to assess their similarity.

2.4. Comparative Analysis: Semantic Similarity Evaluation

In NLP, evaluating semantic similarity is crucial for information retrieval, question-
answering, and summarization tasks. Semantic similarity measures how closely two textual
elements convey related meanings, focusing on ideas rather than exact word matches [32].
Techniques for measuring have evolved from basic methods like Jaccard and cosine sim-
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ilarity to word embeddings such as Word2Vec, GloVe, and FastText, which represent
words in vector spaces but lack sentence-level context. Transformer models like BERT and
RoBERTa improved contextual understanding but at high computational costs. Sentence-
BERT (SBERT) addressed this by combining BERT's contextual capabilities with efficiency,
producing sentence-level embeddings optimized for semantic similarity tasks [33].

2.4.1. Semantic Similarity Assessment

We used semantic similarity as a metric to evaluate the responses generated by the
model under RAG and non-RAG conditions. We employed the SentenceTransformer
model to compute semantic similarity, specifically the pre-trained paraphrase-multilingual-
MiniLM-L12-v2, designed to generate sentence embeddings. This model was selected for
its ability to work across multiple languages, including English, and its effectiveness in
representing the semantic meaning of sentences.

This approach allowed us to quantitatively assess how closely the responses generated
by the model align with the expected answers. By comparing cosine similarity scores across
RAG and non-RAG responses, we could evaluate the impact of contextual retrieval on
the model’s ability to generate semantically accurate answers. This step was critical for
determining the effectiveness of RAG in improving the relevance and accuracy of responses
in the domain of environmental control in broiler poultry farming.

The process involved three main steps. First, each sentence was passed through the
model using the encoding method, which converted the text into a dense numerical vector,
or embedding, to capture its semantic meaning. Second, the resulting embeddings were
transformed into tensors, a data structure optimized for mathematical operations and
essential for performing similarity computations. Finally, the semantic similarity between
two sentences was calculated using the cosine similarity index, a standard metric for
comparing high-dimensional vectors such as sentence embeddings. This index measures
the cosine of the angle between two vectors, with values ranging from —1 to 1, where
1 indicates semantically identical sentences, 0 indicates no semantic similarity, and —1
indicates semantic opposition (a rare outcome in such tasks) [32,33].

For the present study, we established three thresholds to categorize performance based
on similarity scores. Responses with a similarity score between 0.0 and 0.6 were classified
as having low similarity. These responses exhibited minimal alignment with the original
text, with key concepts either missing, imprecisely represented, or significantly divergent
from the source content. Linguistic and structural elements also showed notable deviations.
Responses with a score between 0.6 and 0.8 were categorized as moderate-similarity. These
responses partially aligned with the original text, reflecting some key concepts but with
notable omissions or inaccuracies. Variations in language and structure were evident,
and extraneous information not present in the original text could be included. Finally,
responses with a similarity score between 0.8 and 1.0 were classified as high-similarity.
These responses closely mirrored the original text, accurately capturing primary ideas and
concepts. Language and structural organization were either highly consistent with the
source material or appropriately adapted while maintaining fidelity without introducing
significant inaccuracies or unrelated information.

2.4.2. Statistical Analysis

To evaluate the impact of the RAG technique on response quality, we analyzed the
semantic similarity scores of response sets with and without RAG. Descriptive statistics
summarized overall performance and variability. A line plot illustrated trends in similarity
scores across all questions, with performance ranges visually represented. A histogram
was generated to compare the frequency distributions of similarity scores, and a difference
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concepts. Language and structural organization were either highly consistent with the
source material or appropriately adapted while maintaining fidelity without introducing
significant inaccuracies or unrelated information.
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To evaluate the impact of the RAG technique on response quality, we analyzed the
semantic similarity scores of response sets with and without RAG. Descriptive statistics
summarized overall performance and variability. A line plot illustrated trends in similarity
scores across all questions, with performance ranges visually represented. A histogram
was generated to compare the frequency distributions of similarity scores, and a difference
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plot highlighted the degree of improvement across questions. Finally, boxplots were used
to illustrate the distributions of similarity scores for visual comparison.

We also compared the statistical results between the two conditions and calculated the
difference between scores with and without RAG to quantify the degree of improvement.
Additionally, we determined the proportion of cases where RAG enhanced similarity
scores. A paired f-test was conducted to assess the statistical significance of the observed
differences. Together, these analyses provided a comprehensive evaluation of the RAG
technique’s effectiveness in improving the semantic relevance of the generated responses.

3. Results
3.1. Descriptive Analysis

The analysis confirms the improvement in the performance of the RAG technique,
highlighting its positive impact (Table 3). The increase in the median similarity index
indicates that RAG consistently improved most responses in this dataset. Specifically, the
average and the median similarity index with RAG compared without RAG represents a
percentage increase of 13.45% for the mean and 12.68% for the median, demonstrating a
consistent enhancement in semantic similarity when RAG is applied.

Table 3. Measures of central tendency.

Similarity Without Similarity with

Measures RAG RAG Difference
Mean 0.6369 0.7713 ~0.1345
Median 0.6569 0.7836 ~0.1268
Standard deviation 0.1660 0.1192 ~—4.68

Source: the authors.

The higher standard deviation for similarity indices without RAG reflects more signif-
icant variability in the results, suggesting that the model’s performance is less consistent
when relying solely on internal knowledge. Conversely, the lower standard deviation for
similarity indices with RAG indicates that the technique improves the average similarity
scores and stabilizes the results by 4.68%. RAG appears to act as a normalizing factor, reduc-
ing variability in the similarity indices and providing more consistent, semantically aligned
responses. This consistency supports the hypothesis that RAG enhances the generated
responses’ quality and reliability.

3.2. Statistical Validation of RAG's Effectiveness

The paired t-test revealed a statistically significant difference between the similarity
indices of responses generated with and without RAG (t = —7.610, p-value = 1.63 x 10~'1).
The negative t-value indicates that, on average, similarity scores with RAG were signifi-
cantly higher than those without RAG. The extremely small p-value demonstrates that the
likelihood of this difference being due to chance is negligible, allowing us to confidently
reject the null hypothesis that there is no significant difference between the two groups.

These results confirm that the observed improvement in similarity indices with RAG
is not a random fluctuation but an actual effect. Combined with the descriptive statistics
and visual analyses, these findings reinforce the conclusion that RAG consistently enhances
semantic alignment in generated responses, further validating its effectiveness as a retrieval-
based augmentation technique.

3.3. Similarity Comparison

Figure 4 illustrates the similarity index for responses generated with and without the
RAG technique across all questions.
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Figure 4. Similarity index comparison, without RAG vs. with RAG. Source: the authors.

Figure 4 shows the overall positive impact of RAG, with responses using RAG gen-
erally achieving higher similarity scores than those without it. Responses without RAG
predominantly fall into the low-similarity range, while those with RAG are more frequently
distributed across the moderate- and high-similarity ranges, reflecting improved align-
ment with the source content. However, RAG’s performance is not consistently excellent.
Around 10% of RAG-generated responses fall below the low-similarity threshold, and
only about 30% reach the high-similarity range. The majority, approximately 60%, fall
within the moderate-similarity range, indicating partial alignment with some omissions or
inaccuracies. Additionally, in 12% of cases, responses without RAG outperformed those
with RAG, suggesting that RAG is not always the optimal solution. These results highlight
RAG’s potential and limitations, emphasizing the need for further refinement to achieve
more consistent, high-quality performance.

3.4. Impact of RAG

The bar graph (Figure 5) indicates the positive impact of RAG by presenting the
differences between similarity indices with and without RAG (i.e., the similarity index
with RAG minus the index without RAG), with 88% of the differences being positive,
confirming RAG’s effectiveness in improving semantic similarity. This result aligns with
earlier analyses, such as the boxplot and histogram, which showed higher medians and a
concentration of RAG responses in higher similarity ranges. The 12% of negative differences
indicate cases where RAG underperformed, likely due to specific question or reference text
characteristics, but these losses had smaller magnitudes, minimizing their overall impact.
Positive differences often exceeded 0.4, highlighting significant gains for specific responses,
while the majority of bars above the reference line (y = 0) underscore the consistency of RAG
in enhancing semantic alignment. These findings confirm that RAG improves response
quality and stability across most cases while identifying areas for further refinement to
address the few cases where RAG was less effective.

3.5. Distribution

The histogram in Figure 6 provides a detailed comparison of the similarity indices
for responses generated with and without RAG, revealing distinct distribution patterns.
Responses with RAG are more concentrated in higher similarity ranges, with a tighter
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distribution and reduced variability, indicating a more consistent performance. In con-
trast, responses without RAG are more dispersed, with a higher concentration in the
intermediate range and limited representation above 0.8, reflecting greater variability and
lower alignment with the source content. This aligns with the descriptive analysis, which
showed higher mean and median similarity indices for RAG responses than non-RAG
responses. Additionally, the similarity comparison graph and the histogram highlight
RAG'’s stabilizing effect, shifting the distribution toward higher values.

D e: i With and Without RAG

°
>

04

Difference (With RAG - Without RAG)

Figure 5. Differences between the similarity rate with RAG and without RAG. Source: the authors.

14 { BN without RAG
@0 with RAG
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@

Frequency
o

02 06
Similarity Indices
Figure 6. Differences between the frequencies of similarity indices with RAG and without RAG.
Source: the authors.

However, limitations remain evident: approximately 10% of RAG responses fall below
0.6, only 30% achieve high similarity (0.8-1.0), and around 12% of non-RAG responses
outperform RAG responses. These findings confirm that while RAG improves response
quality and consistency overall, its effectiveness varies, leaving room for further refinement.

The boxplot in Figure 7 highlights differences in the distribution of similarity indices
for responses generated with and without the RAG technique. The median similarity index
for responses with RAG is visibly higher than those without RAG, confirming that most
responses with RAG achieve better alignment with the source content. This finding is
consistent with the descriptive analysis, which showed higher mean and median values for
RAG responses than without RAG responses.

The smaller interquartile range (IQR) for RAG responses indicates reduced variability
among the central 50% of scores, indicating a more consistent performance. In contrast, the
larger IQR for responses without RAG reflects greater dispersion and inconsistency, as also
seen in the similarity comparison graph and histogram, where non-RAG responses showed
broader variability and a higher concentration of lower similarity scores. Additionally,
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while responses with RAG exhibit more outliers, these are concentrated in higher similarity
ranges, suggesting occasional high-performing cases. Conversely, the outliers for responses
without RAG occur in much lower similarity ranges, underscoring poor alignment and
significantly lower response quality.

10

Similarity Index
o
o

°
=

0.2 °

Without RAG With RAG

Figure 7. Boxplot comparison of the distributions considering the similarity indices with and without
RAG. Source: the authors.

The histogram also supports this observation, showing a denser concentration of RAG
responses in higher similarity ranges and non-RAG responses more scattered in interme-
diate ranges. These results reinforce the conclusion that RAG improves both the average
similarity scores and the consistency of responses, although occasional limitations remain.

The results indicate the effectiveness of the RAG technique in enhancing the semantic
similarity of generated responses. Across all analyses, RAG consistently outperformed
the non-RAG approach, as evidenced by higher mean and median similarity indices and
reduced variability, with a decrease in standard deviation. The paired t-test confirmed
these improvements’ statistical significance, reinforcing that the observed gains were not
due to random chance. The graph analysis highlighted the concentration of RAG responses
in higher similarity ranges, demonstrating improved accuracy and greater consistency.
It further revealed that 88% of cases showed positive gains with RAG, with significant
improvements in some cases exceeding 0.4.

4. Discussion

In the present study, the results demonstrated the potential of RAG to enhance the
accuracy and relevance of LLM-generated responses in environmental control for broiler
poultry farming. The findings supported our hypothesis that RAG would improve LLM
performance by providing contextual information to support informed decision-making.
Integrating RAG with LLMs demonstrated potential by improving contextual alignment, as
evidenced by a 13.45% increase in mean similarity scores. Since PLF in broiler production
relies on detection, monitoring, analysis, and decision-making to ensure productivity and
welfare [2,3], these enhancements are crucial for addressing complex environmental data
and supporting real-time decision-making [3,8].

Despite these encouraging results, some limitations were observed. In 12% of cases,
responses without RAG outperformed those with RAG, indicating that retrieval quality
and relevance can occasionally hinder performance. This highlights the need to enhance
retrieval mechanisms and ensure external knowledge bases remain current and comprehen-
sive [25,26]. Computational costs and scalability are also important challenges, particularly

72




AgriEngineering 2025, 7, 12

13 0f 15

for high-density poultry production, where real-time decision-making demands both effi-
ciency and reliability [11].

The findings also emphasize the practicality of RAG for small-scale producers, offering
a cost-effective alternative to traditional consultancy services. By retrieving and integrating
relevant knowledge, RAG-equipped LLMs ensure more dynamic and tailored support,
making real-time environmental control adjustments feasible even in resource-limited
settings [26-30].

From a practical perspective, the enhanced performance of RAG has clear implications
for the poultry industry. Its ability to deliver consistent, context-sensitive insights into
environmental variables, such as temperature, humidity, and ammonia levels, supports
producers in maintaining optimal conditions for animal welfare and productivity. Fur-
thermore, RAG addresses key industry challenges by analyzing sensor data, generating
reports, optimizing ventilation, managing thermal conditions, and monitoring air quality,
providing actionable insights that improve productivity and bird welfare.

The controlled variables and reproducible methodologies used in this study further
ensured the validation of the hypothesis by isolating the impact of RAG on response quality.
The improvement in semantic similarity demonstrates that integrating relevant external
knowledge into LLM workflows leads to more precise and context-sensitive outputs. These
findings underscore the effectiveness of RAG in overcoming common limitations of LLMs,
such as generalized responses and reliance on static training data [2,3,16-18].

In conclusion, the results confirm our initial hypothesis, demonstrating that RAG
improves LLM performance by providing contextual information. While some areas require
refinement, the observed improvements validate the viability of RAG as a transformative
tool for modern poultry farming.

5. Conclusions

The present study demonstrates the effectiveness of integrating RAG with LLMs to
enhance decision-making and improve environmental control in broiler poultry farming.
The findings highlight RAG'’s capacity to improve the semantic accuracy and contextual
relevance of LLM responses, making it a promising approach for addressing the com-
plex challenges of high-density poultry production systems. The statistical and semantic
analyses confirmed that RAG reduces variability and enhances LLM response consistency,
enabling producers to make data-driven adjustments informed by LLM answers and
analysis, optimizing animal welfare and productivity.

Despite these promising results, there is still room for improvement. Challenges
in managing retrieval quality, addressing inconsistencies in retrieved information, and
ensuring scalability underscore the need for continued refinement of RAG frameworks.

Beyond its immediate benefits, integrating RAG into LLM workflows offers a scalable
and cost-effective solution for supporting small-scale producers who often lack access to
expert consultancy. By bridging the gap between raw sensor data and actionable insights,
RAG-equipped LLMs demonstrate significant potential to transform environmental man-
agement practices, fostering sustainability and regulatory compliance in broiler farming.

Future research should focus on enhancing the precision and reliability of RAG by
addressing uncertainties in retrieved information and incorporating non-classical logic,
such as Fuzzy and Paraconsistent Logic, to handle variability and ambiguity in data.
Exploring alternative metrics—perplexity, precision, and factual accuracy—could provide
deeper insights into RAG performance. Comparative studies with other LLMs, including
models from different providers, would also establish valuable benchmarks for scalability
and generalizability. Another promising avenue lies in integrating sensor data from poultry
houses with RAG-enabled knowledge bases, generating real-time, context-sensitive insights
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to advance precision livestock farming further. Such developments would solidify RAG's
role as a transformative tool for improving environmental control and decision-making in
modern agriculture.
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3.3 A Decision Support Al-Copilot for Poultry Farming: Leveraging Retrieval-
Augmented LLMs and Paraconsistent Annotated Evidential Logic ET to

Enhance Operational Decisions

The third article, titled “A Decision Support Al-Copilot for Poultry Farming:
Leveraging Retrieval-Augmented LLMs and Paraconsistent Annotated Evidential
Logic Etto Enhance Operational Decisions,” was submitted to the international journal
AgriEngineering (MDPI) and received a favorable review, currently undergoing final
revision according to editorial recommendations. The study was authored by Marcus
Vinicius Leite, Jair Minoro Abe, and lIrenilza de Alencar Naas, affiliated with
Universidade Paulista (UNIP) and Marcos Leandro Hoffmann Souza, affiliated with
Universidade do Vale do Rio dos Sinos (UNISINOS).

This study represents the synthesis and validation stage of the research,
integrating the theoretical, experimental, and computational components developed in
the previous phases. Its main objective was to design, implement, and evaluate a DSS
based on the integration of Logic E1, LLMs, and RAG, thereby consolidating a
conversational agent capable of operating under conditions of uncertainty,
contradiction, and informational incompleteness characteristic of intensive poultry
farming (Abe, Akama & Nakamatsu, 2015; Carvalho & Abe, 2018; Lewis et al., 2021).

The research aimed to demonstrate the practical feasibility of the proposed
integrative model by transforming logical-evidential inferences into contextually
grounded and semantically consistent responses. To achieve this, it articulated three
complementary dimensions: logical-evidential inference, responsible for processing
favorable and unfavorable evidence (Abe, 2014; de Carvalho Junior et al., 2024);
contextual processing, guiding the retrieval and weighting of relevant information
through RAG (Li et al., 2022; Izacard & Grave, 2021); and semantic interpretation,
performed by the LLM, which generates linguistically coherent responses and
recommendations (Brown et al., 2020; Vaswani et al., 2017). Positioned in the third
methodological phase, modeling, implementation, and validation, this study provides
the empirical consolidation of the theoretical-operational model, evaluating its
performance in terms of logical-evidential consistency, semantic accuracy, and
operational applicability.

The developed architecture was structured into three main modules: the
Knowledge Base Construction Pipeline (KBCP), responsible for preprocessing

technical and scientific documents, including text extraction, chunk segmentation,
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vectorization, and indexing via FAISS Vector Store (Wang et al., 2025); the Domain-
Specific Knowledge Base (DS-KB), which stores the vector repository and enables
semantic search through cosine similarity (Reimers & Gurevych, 2019); and the
Conversational Decision Support Agent (C-DSS-A), which integrates the logical-
evidential inference layer (implemented according to the Para-Analyzer Algorithm,
PAA, of Logic ET) with the state-of-the-art LLM (GPT-40) (OpenAl et al., 2024),
combining formal reasoning and natural language generation within a conversational
interface.

Experiments were conducted using representative queries from five decision
domains in poultry production, environment, nutrition, health, welfare, and
management, processed under four conditions: without preprocessing, with
preprocessing (normalization and lemmatization), with RAG enabled, and with RAG
combined with Logic ET (Boban et al., 2020; Pramana et al., 2022). Responses were
evaluated using semantic similarity, contextual relevance, and logical-evidential
consistency metrics, measured through the parameters (Gce, Gct) and control values
for certainty and contradiction (Vscc, Vicc, Vscct, Vicct) (Abe, 2011; Carvalho & Abe,
2018). Global performance was statistically analyzed and visualized through
correlation matrices and Unit Square in Cartesian Plane (USCP) diagrams, enabling
observation of inference stability under varying degrees of uncertainty and
fragmentation (Abe, 2011; Akama, 2016).

The results showed that the integrated Logic ET and LLM with RAG system
achieved significant gains in both consistency and precision compared with versions
lacking logical-evidential inference. The average semantic similarity of responses
increased by 18.2%, while contextual relevance rose by 15.6%, confirming the synergy
between retrieval and inference layers. The distribution of evidence pairs (u, A)
revealed a higher concentration in the consistent truth quadrant (V) and a substantial
reduction of occurrences in the inconsistent (T) and paracomplete (L) states,
demonstrating the system’s ability to stabilize decisions even under contradiction and
incompleteness (Abe, 2014; de Carvalho Junior et al., 2024). RAG reduced semantic
dispersion by incorporating relevant external evidence, while Logic ET acted as a
stabilizing inference filter, mitigating internal contradictions and enhancing reasoning
interpretability (Carvalho & Abe, 2018; Abe, Akama & Nakamatsu, 2015). The system
proved capable of justifying each response based on its corresponding logical-
evidential state and retrieved sources, promoting transparency and traceability (Leite

et al., 2025). Visualization in the USCP diagram revealed increased density in quasi-
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true states (QV—T), indicating a predominance of logically consistent responses
supported by robust evidence (Abe, 2011; Akama, 2016).

The findings confirm that integrating formal symbolic reasoning with
probabilistic language models provides an effective approach for supporting complex
decision-making in uncertain environments (Abe, Akama & Nakamatsu, 2015; de
Carvalho Junior et al., 2024). Logic ET, by quantifying and weighting degrees of
evidence, acts as a logical controller capable of regulating the uncertainty and
contradiction inherent to natural-language reasoning (Abe, 2011; Abe, 2014). This
integration enables the conversational agent not only to generate linguistically
appropriate responses but also to evaluate the consistency of its own inferences,
approaching an explainable and self-regulating behavior (Carvalho & Abe, 2018; Leite
et al., 2025). Beyond validating the central hypothesis of this master’s thesis, the
convergence among logical-evidential inference, contextual processing, and semantic
interpretation, the study demonstrates that this integration produces a DSS that is
consistent, interpretable, and adaptable, overcoming the coherence and explainability
limitations of conventional DSS based solely on statistical learning (Brown et al., 2020;
Vaswani et al., 2017).

The results further reinforce the applicability of the approach to other productive
domains requiring decision-making under uncertainty, highlighting the potential of
Logic ET as a theoretical-computational framework for auditable and resilient
intelligent systems (Carvalho & Abe, 2018; de Carvalho Junior et al., 2024). The
proposed model goes beyond response automation by embedding verifiable and
governable reasoning mechanisms, essential for the reliability and transparency of
intelligent Decision Support Systems (Akama, 2016; Abe, 2011). Thus, this study
consolidates Logic ET as the logical-operational core of the developed model,
demonstrating its ability to sustain consistent, traceable, and formally explainable

inference in natural-language-based systems applied to Production Engineering.
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Abstract

Driven by the global rise in animal protein demand, poultry farming has evolved into a
highly intensive and technically complex sector. According to FAQ, animal protein pro-
duction increased by about 16% in the past decade, with poultry alone expanding 27%
and becoming the leading source of animal protein. This intensification requires rapid,
complex decisions across multiple aspects of production under uncertainty and strict time
constraints. This study presents the development and evaluation of a conversational sys-
tem designed to support decision-making to assist poultry producers in addressing tech-
nical queries across five key domains: environmental control, nutrition, health, hus-
bandry, and animal welfare. The system combines a large language model (LLM) with
retrieval-based generation (RAG) to ground responses in a curated corpus of scientific and
technical literature. Additionally, it adds a reasoning component using Paraconsistent An-
notated Evidential Logic Et, a non-classical logic designed to handle contradictory or in-
complete information. Evaluation was conducted by comparing system responses with
expert reference answers using semantic similarity (cosine similarity with SBERT embed-
dings). Results indicate that the system successfully retrieves and composes relevant con-
tent, while the paraconsistent inference layer makes results easier to interpret and more
reliable in the presence of conflicting or insufficient evidence. These findings suggest that
the proposed architecture provides a viable foundation for explainable and reliable deci-
sion support in modern poultry production, achieving consistent reasoning under contra-
dictory or incomplete information where conventional RAG chatbots would fail.

Keywords: Poultry Production; Poultry Farming; Decision Support System; LLM Large
Language Models; RAG Retrieval Augmented Generation; Paraconsistent Annotated Ev-
idential Logic Et; Smart Farming.

1. Introduction

Poultry production has become the most widely consumed source of animal protein
worldwide, driven by rising global demand, rapid urbanization, and the intensification
of livestock systems [1-4]. According to FAO, animal protein production increased by
about 16% in the past decade, with poultry alone expanding 27% and becoming the
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leading source of animal protein [1]. As production scales grow, poultry farmers are in-
creasingly required to make rapid and complex decisions involving environmental con-
trol, nutrition, health, animal welfare, and husbandry, often under conditions of uncer-
tainty, time pressure, and conflicting information [4,5].

To cope with the growing decision complexity of intensive poultry systems, a variety
of farm management platforms integrating decision-support tools have been introduced
[36,38,39]. Examples include eFarm, a precision agriculture application that integrates
health, feed, and production metrics for dairy and poultry operations [39]; farmOS, a com-
munity-driven open-source platform for planning and record keeping [40]; and the Poul-
try Farming Management System, which automates data collection for inventory, produc-
tion, sales, and expenses [41]. While these systems improve data organization and report-
ing providing valuable functionalities for record keeping, planning, and health or produc-
tion tracking, they primarily serve as dashboards or recordkeeping applications. Their
embedded DSS modules, although useful for routine monitoring, are not designed to cope
with uncertainty, contradictory inputs, or overlapping decision domains—challenges that
are common in intensive poultry farming. As a result, similar to these platforms and their
decision-support modules, most existing tools remain narrow in scope, focused on iso-
lated domains, with limited integration across technical areas and little resilience to con-
tradictory or incomplete information [4,5,36,38,39].

In practice, Decision Support Systems (DSS) in poultry farming often take the form
of deterministic rule-based or Al-based controllers, [oT monitoring platforms, big data
solutions, and statistical dashboards that track environmental conditions, animal health
indicators, and production metrics [5,29,30,36]. Although these technologies provide val-
uable data, they typically operate under significant limitations—such as infrastructure de-
mands, expertise gaps, and cost-related constraints—and are frequently based on fixed
thresholds or rigid decision rules, lacking mechanisms for context-aware inference or
adaptive reasoning [17,29]. Consequently, current systems struggle to accommodate un-
certainty, conflicting signals, and the need for multi-domain integration in real-world de-
cision-making scenarios [34,35].

These constraints have motivated the exploration of knowledge-based approaches
that incorporate structured reasoning and domain expertise to enhance decision robust-
ness [8,36]. In this context, recent advances in Large Language Models (LLMs) offer prom-
ising capabilities for contextual understanding, flexible inference, and semantic generali-
zation, particularly when enriched with Retrieval-Augmented Generation (RAG) mecha-
nisms that ground responses in external content [6-10,36]. However, despite the potential
of LLMs in extracting, composing, and synthesizing complex technical knowledge from
unstructured sources, these models still struggle when faced with conflicting or incom-
plete information [8,11-13]. Moreover, there is a significant knowledge gap in the appli-
cation of LLMs to livestock production, particularly regarding the challenges of poultry
farming processes, which opens opportunities for further research and technological ad-
vances [38]. This gap highlights the need for a framework that not only leverages
LLM+RAG but also introduces an evidential reasoning layer capable of contradiction-tol-
erant inference. In this sense, standard RAG-based models collapse under contradictory
signals, whereas paraconsistent reasoning explicitly tolerates and structures such con-
flicts.

To address these challenges, this study examines the integration of LLMs and RAG
with Paraconsistent Annotated Evidential Logic Et (Logic Et). This non-classical frame-
work enables reasoning under contradictory, insufficient, or ambiguous evidence. While
LLMs provide linguistic generalization and RAG ensures factual grounding through ex-
ternal sources, Logic Et adds an inferential layer that explicitly handles conflicting or
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incomplete evidence, providing transparency and robustness in decision-making pro- 91
cesses [8,14-16]. 92
The objective of this proof-of-concept study is to develop and evaluate a knowledge- 93
based Decision Support System (DSS) for poultry production, structured as a conversa- 94
tional agent—the Decision Support Al-Copilot—that answers domain-specific queries us- 95
ing LLMs, content retrieved via RAG, and paraconsistent inference based on Logic Et. 9%
The system addresses five critical areas of poultry production: environmental manage- 97
ment, animal nutrition, health monitoring, husbandry, and animal welfare. Its configura- 98
tion was defined through controlled experiments designed to evaluate both the quality of 99
semantic retrieval and the strength of the reasoning, optimizing generative behavior and 100
logical consistency. Performance was then assessed through comparison with expert-cu- 101
rated references using semantic similarity metrics (cosine similarity with SBERT embed- 102
dings) and evidential assessments. While the Discussion briefly contrasts the proposed 103
framework with recent LLM+RAG approaches, a comprehensive comparison with other 104
DSS approaches lies beyond the scope, as the focus here is on feasibility and methodolog- 105
ical contribution. 106

2. Materials and Methods 107

This study adopts an applied and experimental methodology to design and evaluate 108
a knowledge-based decision support system for poultry production, combining theoreti- 109
cal modeling, computational implementation, and empirical evaluation. All materials, al- 110
gorithms, and procedures are described in detail to ensure reproducibility and enable rep- 111

lication by future research. 112
2.1 Methodological Framework Overview 113
The methodological framework integrates three complementary components: 114

1. Theoretical modeling with Logic Et, which provides the inferential foundation for 115
reasoning under uncertainty and contradiction, supporting key decision pointsinthe 116
system workflow. 117

2. Experimental validation through Design of Experiments (DoE), conducted as proof- 118
of-concept trials to tune system-level parameters affecting semantic retrieval, prepro- 119
cessing, and generative behavior, rather than as large-scale validation. 120

3. System implementation of the Decision Support Al-Copilot, developed as a modular 121
RAG-based architecture that integrates LLMs with evidential reasoning mechanisms. 122
The following subsections present each component in sequence, ensuring a coherent 123

integration between theoretical modeling, experimental validation, and system imple- 124

mentation. 125

2.2 Evidential Inference with Logic ET 126

Conventional LLM-based systems struggle when confronted with imprecise, incom- 127
plete, or contradictory inputs, a critical limitation in technical decision-support scenarios 128
[6,11]. To address these challenges, the proposed system incorporates Logic Et as a com- 129
plementary inference mechanism for handling evidential uncertainty and inconsistency 130
in a mathematically tractable manner [14-16,32]. 131

As a non-classical logical system, Logic Et is designed to support reasoning under 132
uncertainty, contradictory, and incomplete information. Its expressive capability stems 133
from the use of dual evidence degrees to express knowledge about a proposition enabling 134
a granular representation of evidential states [14,18]. 135

Logic Et assigns to each proposition p an evidential annotation (i, A), where pand A 136
denote degrees of favorable and unfavorable evidence respectively. This dual-valued rep- 137
resentation prevents trivialization in inference, even when p and A simultaneously as- 138
sume high values, a condition under which Classical Logic becomes inconsistent and 139
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deductively trivial [14,32]. These evidential annotations are formally interpreted within
three conceptual spaces [14,15,32], depicted in Figures 1a, 1b, 1c, each capturing a specific
aspect of paraconsistent reasoning:

T - Inconsistent A Gy
(1,1) +1
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- = G
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Figure 1. Key concepts about visual decision states in Logic Et, adapted from [14,15]. (a) The evi-
dential lattice with partial order, where classical logical states: True, False, Inconsistent, and Para-
complete, correspond to extremal vertices. (b) The QUPC (Unit Square of the Cartesian Plane) pro-
vides a geometric representation of evidential states (u, A), highlighting both extreme and non-ex-
treme (quasi) logical regions. (c) The logical lattice T results from a nonlinear transformation T
(1, A)=(u—-A, p+A-1), mapping evidential inputs into a plane where the horizontal axis encodes
certainty (Gee) and the vertical axis uncertainty (Gct). This transformed space enables graded rea-

soning across nuanced logical states.

1.  Evidential Lattice with Partial Order: This structure defines a complete lattice over
the unit square [0, 1] 2, where each pair (1, A) encodes the degrees of favorable and
unfavorable evidence about a proposition. A partial order is defined by:

(UL, A1) € (2, A2) = pul<p2and A12 A2

This order reflects evidential dominance and enables lattice-theoretic operations (in-
fimum, supremum, neutral elements). A canonical negation operator ~ (i, A) = (A, u)
supports dual reasoning and contradiction handling. The evidential lattice serves as
the operational substrate for all inference processes in Logic Et-based systems
[14,15].

2. QUPC (Unit Square of the Cartesian Plane), from a geometric standpoint, the eviden-
tial lattice can be visualized as a unit square of the Cartesian plane (referred to in
Portuguese as Quadrado Unitario do Plano Cartesiano (QUPC). Each evidential pair
(u, A) corresponds to a point in this 2D unit square (Figure 1b), allowing for an intu-
itive representation of the underlying information state. While the lattice defines log-
ical and computational operations through ordering, the QUPC offers a descriptive
and analytic space for visualizing evidential distributions and for mapping them
onto the logical plane [14-16,32].

3. Logical Lattice T: A nonlinear transformation maps QUPC into the logical space T,
where inference operates in Figure 1c. The transformation defines two axes: the cer-
tainty degree (Gee), and the contradiction degree (Gct).

T (1, A) = (Ges{t, A), Ger(pt, A)) = (A, p+A-1)
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Extreme logical states (True, False, Inconsistent, Paracomplete) correspond to the 172
four lattice extremities (1,0) — true, (-1,0) — false, (0,1) — inconsistent, (0, -1) — 173
paracomplete (incomplete). Intermediate regions correspond to non-extreme states 174
such as quasi-true, quasi-false, quasi-inconsistent and quasi-paracomplete and their 175
respective tendencies, allowing graded reasoning, a crucial asset in non-deterministic 176
conversational contexts as shown in Table 1 [14,15,32]. 177

Table 1. Symbolic representation of extreme and non-extreme logical states in Logic Et, including 178

quasi-states and transitional tendencies. 179
Symbol State
A\ True
QV—-T Quasi-true, tending to inconsistent;
QV—-1 Quasi-true, tending to paracomplete
F False
QF—-T Quasi-false, tending to inconsistent
QF—1 Quasi-false, tending to paracomplete
T Inconsistent
QT—-V Quasi-inconsistent, tending to true
QT—F Quasi-inconsistent, tending to false
1 Paracomplete or Indeterminate
QL—-V Quasi-paracomplete, tending to true
QL—F Quasi-paracomplete, tending to false
Adapted from [15]. 180
181

The annotations support the deduction of both extreme and non-extreme logical 182
states, including quasi-states and directional trends. Each of these logical outcomes serves 183
as a semantic signal that guides the system’s behavior, prompting clarification requests, 184
refining domain classification, or flagging inadequate answers. This evidential logic 185
framework introduces interpretability and resilience, avoiding reliance on brittle heuris- 186
tics or handcrafted rules. 187

In Logic ET, the degree of certainty (Gce = u — A) expresses the balance between sup- 188
porting and opposing evidence, while the degree of uncertainty (Gco=p+A—1) indicates 189
the extent to which such evidence is simultaneously conflicting 190

As detailed in later sections, Logic Et underpins the system's core inferential mecha- 191
nisms by enabling control decisions associated with propositions such as “The user ques- 192
tion is clear”, “The user question belongs to one of poultry production domains”, or “The 193
generated answer is adequate”. 194

2.3 Design of Experiments for System-Level Parameter Tuning 195

In decision-oriented systems that demand precision, traceability, and trust, it is criti- 196
cal to address the limitations of large language models, particularly their non-determinis- 197
tic behavior and susceptibility to hallucinations [8,11-13,19]. This study applied a Design 198
of Experiments (DoE) approach to conduct a series of controlled tests, aiming to investi- 199
gate how variations in system-level configurations affect the reliability, interpretability, 200
and semantic accuracy of responses generated by the DSS architecture. 201

A controlled subset of the domain-specific knowledge base served as the foundation 202
for the experiments. This corpus enabled the development of a fixed set of predefined 203
queries; each paired with a gold-standard curated answer used as reference in the evalu- 204
ation process. Two complementary metrics were analyzed. The first assessed system per- 205
formance by measuring the semantic similarity (cosine similarity with SBERT embed- 206
dings) between the retrieved content and the reference answer, serving as a proxy for 207
content fidelity and practical utility. The second examined the semantic alignment 208

&3




AgriEngineering 2025, 7, x FOR PEER REVIEW 6 of 28

between the retrieved content and the original query, reflecting contextual coherence.
While informative, this second metric does not guarantee factual correctness and may
overvalue responses that are lexically aligned but semantically inaccurate or incomplete.

All experiments shared the same computational setup, including preprocessing li-

braries, LLM access, and vector-based retrieval infrastructure. Full implementation details
and software versions are provided in Section 2.4 (Reproducibility and Software Environ-
ment).

Five experiments investigated the chunking strategy, input preprocessing, and gen-

eration parameters:

1.

Chunk Size and Overlap: In the RAG pipeline, chunk size refers to the number of
tokens in each embedded segment, while overlap specifies the number of tokens re-
peated between adjacent chunks, directly affecting contextual continuity and infor-
mation density. The interaction between these parameters affects retrieval precision,
semantic cohesion, and computational efficiency [20].

The experiment utilized set of predefined question-answer pairs adopted across the
other experiments and assessed both semantic alignment with the reference answer
and contextual relevance to the original query. Three chunk sizes were tested: 128
tokens (high semantic precision, suitable for fine-grained reasoning), 256 tokens
(practical optimum in most RAG pipelines), and 512 tokens (which maximizes cohe-
sion in technical paragraphs). Overlap values included 32 tokens (minimal redun-
dancy, avoiding abrupt cuts), 64 tokens (standard default, balances coherence and
cost), and 128 tokens (high redundancy, beneficial for larger chunks but computa-
tionally heavier) [20,21]. A complete factorial design (3 = 3) was employed to investi-
gate the combined effects of chunk size and overlap.

The objective was to identify optimal trade-offs between granularity and cohesion,
determine points of diminishing semantic returns, and establish thresholds beyond
which overlap increases computational cost without improving retrieval quality.
Lemmatization: This preprocessing step reduces inflected or derived words to their
base form (lemma), preserving grammatical context and semantic identity. By map-
ping morphological variants to a unified lexical representation, it may reduce em-
bedding dispersion and improve retrieval alignment [22,23].

Lemmatization was evaluated as a binary configuration: either applied or omitted
symmetrically to both the indexed corpus and the user question-answer pairs. This
experiment employed the chunking configuration identified in Experiment1 and
used the same set of predefined question-answer pairs, along with the evaluation
criteria previously established.

The objective was to determine whether the inclusion of lemmatization improves se-
mantic similarity to the reference answer and enhances contextual alignment with
the original query.

Normalization: This preprocessing step standardizes both the domain-specific cor-
pus and the question-answer pairs by reducing superficial variability that does not
affect meaning. It directly influences lexical alignment, improves embedding con-
sistency, and enhances semantic matching, particularly in architectures where token-
level similarity governs access to relevant content [24].

Normalization was evaluated before vectorization as a binary configuration: either
applied or omitted symmetrically to both the indexed corpus and the question-an-
swer pairs used for evaluation. A complete 2* factorial design was used to test all
possible combinations of four operations: lowercasing, punctuation removal, dia-
critic stripping, and whitespace collapsing.

The objective was to determine whether these steps, individually or in combination,
enhanced retrieval quality in terms of semantic similarity and contextual relevance.
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Synonym Expansion: This preprocessing strategy enriches the indexed corpus and
the question-answer pairs by appending or substituting terms with semantically
equivalent alternatives. It aims to mitigate vocabulary mismatches and improve
alignment between the user formulation and the stored knowledge base [25].|Follow-
ing established evidence in information retrieval [45], synonym expansion was ap-
plied to reduce vocabulary mismatch and increase recall. This was particularly effec-
tive in poultry-related contexts: for instance, queries with ‘feed formulation’ improved
retrieval when expanded with ‘broiler diet’, and ‘temperature control” benefited from
the inclusion of “thermal regulation’. While this strategy increased coverage, it also in-
troduced a small number of false positives (e.g., ‘lighting program’ matched with
‘lightweight’), which we acknowledge as a trade-off in retrieval precision.

Synonym expansion was evaluated as a binary configuration: either applied or omit-
ted symmetrically to both the indexed corpus and the question-answer pairs. Lexical
resources, including the semantic lexicon WordNet and its multilingual extension
OMW, were used to identify synonym candidates prior to vectorization.

The objective was to assess whether this strategy enhances retrieval performance,
particularly in terms of semantic similarity to the reference answer, in scenarios
where lexical variation might otherwise reduce retrieval effectiveness.

4. Temperature and Top-p: The foundation model parameters regulate the stochastic
behavior of the language model during response generation. Temperature controls
the entropy of the output distribution, modulating the balance between determinism
and exploration [26,27]. Top-p (nucleus sampling) constrains the sampling space to
the smallest set of tokens whose cumulative probability exceeds a given threshold,
shaping the diversity and unpredictability of the generated text [26,27].

This experiment employed the chunking configuration identified in Experiment 1
and utilized the same set of predefined question-answer pairs, along with the eval-
uation criteria previously established. This model generated responses across a pa-
rameter space that ranged from factual and deterministic completions to controlled
interpretative outputs and exploratory generations. The tested values were temper-
ature € {0.0, 0.3, 0.6, 0.9} and top-p € {0.8, 0.9, 1.0}. A complete 4 3 factorial design
was employed to isolate the interaction effects of parameters within a realistic re-
trieval-augmented generation workflow. The tested ranges for temperature and top-
p were informed by previous research on LLM generation parameters, which demon-
strated that very low temperature values tend to produce deterministic and repetitive
outputs, while very high values increase incoherence [11,46,47,48]. Similarly, top-p
values between 0.6 and 1.0 have been widely adopted in foundational work to bal-
ance output diversity with factual reliability [46,48] (Brown et al., 2020). These ranges
therefore represent established practice in controlled experiments with large lan-
guage models.
The objective was to evaluate how different sampling configurations impact seman-
tic fidelity to the reference answer and contextual relevance to the original query,
while maintaining generation stability of generation and interpretability.
Collectively, the experiments provided the empirical foundation for configuring the
conversational agent. The selected parameters were directly incorporated into the final
architecture, ensuring that the system strikes a balance between semantic precision, con-
textual relevance, and computational efficiency under realistic decision-making condi-
tions. All procedures described here were executed within a controlled and reproducible
software environment (see Section 2.4 for details).

2.4 System Architecture

The Decision Support Al-Copilot is composed of integrated modules structured as a
Retrieval-Augmented Generation (RAG) application, as illustrated in Figure 2. The first
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module, the Knowledge Base Construction Pipeline (KB-CP), is responsible for preparing, 311
segmenting, embedding, and indexing domain-specific content. The resulting repository, 312
the Domain-Specific Knowledge Base (DS-KB), is organized by poultry production 313
knowledge domains to support targeted semantic retrieval. 314

The second module, the Conversational DSS Agent (C-DSS-A), handles query inter- 315
pretation, evidence retrieval, response generation, and logical evaluation, acting as the 316
interactive interface between the user and the system, orchestrating language understand- 317
ing, evidential reasoning, and answer synthesis. 318

Knowledge Base

Construction Pipeline Conversational DSS

(KB-CP) Agent (C-DSS-A)
& f@?

8
818
18

Domain-Specific

Knowledge Base
(DS-KB)

319

Figure 2. Modular architecture of the Decision Support Al-Copilot. The KB-CP preprocesses and 320
embeds domain-specific content into the DS-KB. The C-DSS-A accesses this indexed repository to 321

interpret user queries, retrieve relevant content, and generate logic-informed responses. 322

The architecture integrates LLMs and RAG techniques with Logic Et to support de- 323
cision-making across multiple technical domains in poultry production. Its structure al- 324
lows for independent evaluation and fine-tuning of semantic retrieval, language genera- 325
tion, and paraconsistent reasoning. 326

The system employs GPT-4o as its core language model. GPT-40 was selected forits 327
semantic precision, low latency, and cost-efficiency, which make it particularly suitable 328
for domain-specific RAG applications [28]. At the time of implementation, it was the most 329
recent publicly available model in the GPT-4-turbo family. Its extended context window 330
(up to 128k tokens) enables the integration of long retrieved passages while maintaining 331
stable performance in the presence of ambiguity or contradiction, an essential requirement 332
for logic-grounded decision support. 333

The operational parameters, such as chunking configurations, preprocessing rou- 334
tines, and generation settings, were empirically defined through the controlled experi- 335
ments described in Section 2.1.2. These tests guided the selection of configurations that = 336
optimize trade-offs between granularity and cohesion, improve semantic similarity (co- 337
sine similarity with SBERT embeddings) between generated responses and the knowledge 338
base, and enhance retrieval quality in terms of both content fidelity and contextual rele- 339
vance. The system was also tuned to enhance robustness under lexical variability, 340
strengthen alignment with the indexed content, and ensure generation stability and inter- 341
pretability of generation across decision-making scenarios. 342

Semantic search is powered by FAISS (Facebook Al Similarity Search), selected for 343
its scalability, support for both CPU and GPU backends, and proven efficiency in dense 344
retrieval pipelines. The system utilized OpenAl’s text-embedding-ada-002 model to en- 345
code knowledge base segments, and computes similarity via inner product (dot product), 346
consistent with the model’s scoring logic. 347
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Vector indexing adopts the IndexFlatIP structure, a non-quantized flat index based
on inner product similarity. This configuration ensures exact search results, which is cru-
cial given the moderate scale of the dataset (fewer than 10,000 vectors) and the need for
precise retrieval. The system performs retrieval via k-nearest neighbor (k-NN) search with
a setting that balances contextual diversity with semantic relevance. Since latency is not a
limiting factor in this application, exact k-NN was preferred to ensure retrieval fidelity
and grounding quality in all downstream generations.

This architectural foundation supports the system’s core functionalities and estab-
lishes the baseline over which configuration-level experiments (Section2.1) were con-
ducted to optimize performance and interpretability. Full details on code availability, soft-
ware versions, and reproducibility protocols are provided in Section 2.4.

2.4.1 Knowledge Base Construction Pipeline (KB-CP)

To support domain-grounded retrieval and ensure high semantic precision during
generation, the system relies on a knowledge base specifically constructed for poultry pro-
duction decision-making. This repository was built through a structured pipeline com-
prising five main stages:

1. Document Collection: A total of 48 technical documents were curated from authori-
tative sources, including peer-reviewed scientific articles, poultry extension bulletins,
technical production manuals, and sanitary protocols. The selection prioritized con-
tent with high informational density, practical relevance, and clear domain affilia-
tion. Documents were collected through targeted searches in scientific databases, in-
stitutional repositories, and validated extension services.

2. Domain Classification: Each document was manually assigned to one of five prede-
fined poultry production domains: (i) Housing and Environmental Control, (ii) Ani-
mal Nutrition, (iii) Poultry Health, (iv) Husbandry Practices, and (v) Animal Welfare.

3. These domains reflect core areas of technical decision-making in intensive poultry
systems and are grounded in established animal welfare frameworks. The FAO's
work on poultry welfare identifies health, nutrition, environmental comfort, and wel-
fare as core aspects of assessment [29,30,42-44]. Classification was performed based
on thematic focus, terminology patterns, and stated objectives of the material. In
cases of overlap, domain assignment favored the dominant technical axis addressed
by the document.

4. Preprocessing: All documents were converted to plain text and segmented into over-
lapping chunks, preserving local semantic cohesion. Chunk size and overlap were
defined according to the optimal configuration identified in Experiment1 (Sec-
tion 2.1.2), which balances retrieval granularity with contextual integrity. This pre-
processing step ensured that segment boundaries did not compromise sentence-level
coherence, thereby improving embedding stability.

5. Vectorization: Each chunk was embedded using OpenAl’s text-embedding-ada-002
model, producing dense vector representations in a high-dimensional semantic
space. These embeddings captured contextual relationships at the subparagraph
level, enabling fine-grained semantic retrieval aligned with user queries.

6. Domain-Based Indexing: For each knowledge domain, a separate FAISS index was
created using the IndexFlatIP configuration (inner product similarity). This design
supports fast and exact k-nearest neighbor (k-NN) search within each semantic re-
pository. The use of independent indexes per domain facilitates targeted retrieval
and minimizes semantic noise during generation.

The complete dataset, including raw documents, processed embeddings, and the full
indexing pipeline, is publicly available via GitHub at [33].

2.4.2 Reasoning Workflow of the Conversational DSS Agent (C-DSS-A)
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The C-DSS-A operates through a structured reasoning cycle (Figure 3) that integrates 398
language comprehension, evidential assessment, semantic retrieval, and logical con- 399

sistency checks. 400
Iterative Iterative Domain Domain-Guided Answer
User Queries Clarification " . Knowledge Generation and
p Classification . . .
Preprocessing Assessment Retrieval Evaluation
o [o¥ K2 w="
oo . (=) fr—
A o A ¢ N p—

= P

( @)

=

401

Figure 3. Workflow of the Conversational DSS Agent (C-DSS5-A), detailing five sequential stages 402
that combine LLM-based understanding with paraconsistent logic operations for query refinement, 403
domain inference, knowledge retrieval, and evidence-grounded response generation. 404

Each decision stage is governed by a logic-based proposition evaluated under Logic 405

E1. The complete workflow is composed of the following stages: 406
1. User Queries Preprocessing: User queries were preprocessed before both vector- 407
based retrieval and language model inference. The adopted preprocessing configu- 408
ration reflected the outcomes of controlled experiments. Synonym expansion wasen- 409
abled as the only non-trivial transformation, selected for its capacity to bridge lexical 410
gaps between user queries and indexed content. Lemmatization and punctuationre- 411
moval were also applied, given their low computational cost and consistent contri- 412
bution to lexical normalization. Conversely, diacritic stripping and whitespace col- 413
lapsing were turned off by default, as their empirical impact on retrieval effectiveness 414
proved negligible. 415

2. TIterative Clarification Assessment: Upon receiving a preprocessed user query, the 416
system initiates an iterative process to evaluate and refine the clarity of the input. 417
This is framed as the proposition: 418
Pi(u, A): “The user question is clear.” 419

The annotation relies on a structured prompting protocol that infers evidential values 420
directly from the LLM. Two specialized prompts quantify distinct epistemic dimen- 421
sions: Clarity, defined as technical specificity and semantic coherence, and Vague- 422
ness, defined as conceptual ambiguity or logical imprecision. Both values are re- 423
turned on a continuous scale from 0 to 1 and respectively, correspond to (u, A). 424

The Gee(u, A) determines whether the system has sufficient confidence to proceed. 425
Following prior applications of Logic Et in expert systems, a conservative threshold 426

of Gee 20.75 was adopted to prevent unstable classifications in quasi-state borderline 427
regions of the QUPC [14-16,18]. If Gee(u, A) < 0.75, the query is considered underde- 428
termined. In such cases, the model generates a clarification prompt, which is ap- 429
pended to the conversational context. The revised input is re-evaluated using the 430
same procedure, forming an iterative loop that continues until the certainty threshold 431

is met (Gee(p, A) 2 0.75). At that point, the system proceeds to domain classification. 432

3. Iterative Domain Classification: Once the question is considered clear, the system 433
prompts the LLM to classify it into one of five predefined poultry production do- 434
mains: (i) housing and environmental control, (ii) animal nutrition, (iii) poultry 435
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health, (iv) husbandry practices, or (v) animal welfare. The classification is formal-
ized as an annotated proposition:

Pa(p, A) = “The question pertains to [identified domain]”.
As in the previous step, the evidential values p and A are inferred by the LLM
through guided prompting and interpreted under Logic Et. If the resulting Gee(u, A)
falls below 0.75, the system generates a meta-question to validate the classification
(e.g., “Does your question relate to [suggested domain]?”). If the user confirms the
domain, the classification is accepted and the system proceeds. If the user rejects it,
the domain is removed from the candidate list, and the LLM is prompted again using
the updated domain set. This loop continues until a confident domain assignment is
achieved, enabling the system to advance to semantic evidence retrieval.
Domain-Guided Knowledge Retrieval: With a clarified question and an identified
domain, the system proceeds to semantic retrieval. The input query is embedded us-
ing OpenAl’s text-embedding-ada-002 model, and a k-NN search (k =5) is performed
in a FAISS vector index (IndexFlatIP with dot-product similarity) to retrieve the most
relevant content chunks. Each passage is linked to its original source and metadata.
Answer Generation and Evaluation: The retrieved passages are concatenated with
the clarified user query and submitted as the prompt context to GPT-4o (via OpenAl
API). The model then generates a draft response. In parallel, it evaluates the anno-
tated proposition:

Ps(u, A) = “The generated answer appropriately addresses the user's question.”
As in previous stages, the values p and A are inferred through guided prompting and
interpreted under Logic Et. The resulting Gee(p, A) reflects the system’s internal con-
fidence in the adequacy of the response. If Gee(u, A) <0.75, the response is flagged as
potentially unreliable and may be revised or explicitly marked with a disclaimer to
inform the user of evidential insufficiency or contradiction. The evidential outputs
produced in this stage are then passed to the logical evaluation module, detailed in
the following section.
Section 2.4 provides a detailed account of the software stack, experimental environ-

ment, and reproducibility measures employed in this work.

243

Reasoning Support with Logic Et

Each proposition formalizes a key decision point in the conversational reasoning cy-

cle. Evidential values p and A are interpreted under Logic Et, and the resulting Gee(u, A)
determines whether the system proceeds, flags the interaction, or initiates an iterative re-
finement. Thresholds and corresponding actions are defined to ensure interpretability,
domain alignment, and response adequacy (Table 2)

Table 2. Annotated Propositions and Evidential Control Logic.

Proposition Evaluated Purpose in Threshold Action if System
ID Statement System (Gcee)* Gcee< Threshold  Interaction Type

Pi(p, A)  “The user question is Assess linguistic 0.75  Trigger clarification Iterative clarifica-

clear.” clarity; ensure question; append tion loop
interpretability user response

Pa(p, A)  “The question pertains  Classify query into 0.75  Pose meta-question Iterative domain

to [identified domain].” production domain to user; eliminate pruning
rejected domain

Ps(p, A)  “The generated answer Assess adequacy 0.75  Flag response as Response flagging

appropriately addresses and relevance of uncertain; optionally or regeneration

the user’s question.”

generated response trigger regeneration

* Threshold adopted to prevent quasi-state borderline regions of the QUPC [14-16,18]
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2.5 Evaluation Protocol

The evaluation protocol focused on unit-level assessment of each reasoning stage

within the C-DSS-A architecture and comprised three sets of tests, each designed to isolate
and validate the behavior of individual components under controlled conditions. This ap-
proach enabled precise attribution of strengths and limitations at each stage of the deci-

sion workflow.

1.

The test of the Iterative Clarification Assessment stage used a synthetic dataset of 130
user questions, generated from the DS-KB and labeled as Clear or Unclear. Each label
encompassed a gradient of linguistic phenomena, including ambiguous phrasing,
underspecified referents, non-technical constructions, and malformed syntax. Man-
ual validation ensured internal consistency and class balance. The objective was to
assess the system's ability to evaluate the proposition Pi(u, A): “The user question is
clear”, by discriminating underdetermined inputs based on evidential clarity rather
than surface features. System performance was measured by its ability to converge
to the correct classification through iterative reformulation, with convergence de-
fined as Gee(p, A) = 0.75 for proposition P;.

The second test targeted the Iterative Domain Classification stage, using a new set of
100 synthetically generated questions, randomly assigned to one of the five defined
domains, Housing and Environment, Animal Nutrition, Poultry Health, Husbandry
Practices, Animal Welfare, or to no domain at all. This randomized distribution sim-
ulated open-query conditions. The dataset also included domainless questions to test
rejection behavior under semantic uncertainty. The objective was to evaluate the sys-
tem’s ability to assess the proposition P»(u, A): “The question belongs to [domain]”,
identifying the most appropriate category without forcing classification when evi-
dential support was lacking. Classification was accepted only when the certainty de-
gree satisfied Gee(u, A)20.75, ensuring evidential convergence before domain attrib-
ution.

The third test focused on the stages of Domain-Guided Knowledge Retrieval and
Answer Generation and Evaluation, using 100 synthetically generated question-an-
swer pairs curated from source articles in the DS-KB. Each question was processed
under two conditions: first, through direct prompting without retrieval or evidential
evaluation, and second, through the whole system workflow, which includes re-
trieval from the D5-KB, generative response, and Logic Et-based self-assessment. In
the second condition, the system instructed the model to evaluate the adequacy of its
answer using Logic Et, producing an evidential annotation for the proposition Ps(u,
A): “The generated answer is adequate”. This annotation served as a meta-level judg-
ment of response quality. For both conditions, the generated answers were compared
to gold-standard references using semantic similarity metrics (cosine similarity with
SBERT embeddings). The objective was to assess whether the evidential reasoning
introduced by Logic ETimproves the system’s capacity to generate semantically valid
responses and enhances the interpretability and trustworthiness of the final output.

2.6 Reproducibility and Software Environment

All system developments, experimental procedures, and evaluation workflows were

implemented and executed in a reproducible Python environment (v3.9.6) using Visual
Studio Code. The implementation leveraged a modular architecture composed of tools for
retrieval orchestration, language generation, vector search, preprocessing, and evaluation.
The main libraries and framewaorks include:

Language modeling and embedding: Openai 1.95.1 (for GPT-40 and text-embedding-
ada-002), tiktoken 0.9.0 (for token counting and window control).
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e Retrieval and orchestration: faiss-cpu 1.11.0 (for dense vector search using Index- 523
FlatIP), langchain 0.3.25 and related packages (langchain-core, langchain-openai, 524
langchain-community, langchain-text-splitters, langchain-xai, langsmith) for chain- 525
ing retrieval, embedding, and generation steps. 526

e Text preprocessing and NLP: spaCy 3.8.7 (for lemmatization and syntactic analysis), 527
nltk 3.9.1 (for lexical resources and linguistic tagging), including downloads: punkt, 528
wordnet, omw-1.4, averaged_perceptron_tagger, averaged_perceptron_tagger_eng, 529
punkt_tab. 530

e  Data analysis and visualization: Pandas 2.3.1 (for data manipulation), scikit-learn 531
1.6.1 (for combinatorial evaluation routines), matplotlib 3.10.3 and seaborn 0.13.2 (for ~ 532
results visualization). 533

¢ Auxiliary and system tools: python-dotenv 1.1.0, requests 2.32.3, aiohttp 3.12.2, httpx ~ 534
0.28.1 (for API and system orchestration), tenacity, joblib, threadpoolctl, Django 5.0.4 535
(web framework), djangorestframework 3.15.1 (APIs RESTful), and tqdm (for robust- 536
ness, parallelization, and progress monitoring). 537
All software dependencies are publicly listed and version-pinned in the project’s re- 538

quirements.txt file. The complete codebase, prompts, dataset, and reproducibility pipeline 539

are available via GitHub at [33]. All the versions indicated are up to date and consistent 540

with the releases available until July 2025. 541

2.7 GenAl Disclosure 542

Generative Al was employed for development support (integrated into Visual Studio 543
Code), the construction of synthetic test data, and the refinement of analysis statements. 544
Synthetic questions and answers used in unit tests and controlled experiments were gen- 545
erated from real source material, under strict semantic constraints and manually curated 546
for consistency and domain alignment. All experimental evidence and analytical results 547
derive exclusively from real system outputs or curated domain content. 548

3. Results 549

This section presents the results of a two-part evaluation. The first part presents con- 550
trolled experiments assessing how system-level configurations influence response qual- 551
ity, interpretability, and semantic alignment. The second part analyzes the behavior of the 552
complete system in end-to-end operation, with emphasis on evidential consistency and 553
domain adequacy. 554

3.1 Experimental Results 555

Controlled experiments were conducted as proof-of-concept to evaluate the impact 556
of variations in chunking strategy, input preprocessing, and generation parameters im- 557
pact the quality of retrieval and response formulation. Each test isolates a specific config- 558
uration variable, allowing for a precise assessment of its impact on semantic accuracy, 559
contextual relevance, and output stability. 560
3.1.1 Effects of Chunk Size and Overlap on Retrieval Quality 561

The experiment evaluated the impact of chunk size and overlap on retrieval quality 562
in the RAG workflow (Figures 4a and 4b). With 128-token chunks, semantic similarity 563
averaged = 0.886 (RA vs. R) and = 0.860 (RA vs. Q) across all overlap levels. For 256-token 564
chunks, overlaps of 32 and 64 tokens resulted in lower similarity values, while an overlap 565
of 128 tokens restored similarity to = 0.883 (RA vs. R) and = 0.854 (RA vs. Q). For 512-token 566
chunks, similarity remained consistently lower across both metrics, even at maximum 567
overlap. 568
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Figure 4. Heatmaps showing the average semantic similarity (cosine similarity with SBERT embed-
dings) between (a) retrieved answers (RA) and gold-standard reference (R) and (b) retrieved an-
swers (RA) and questions (Q), measured across different chunk and overlap configurations. The
experiment corresponds to the parameter tuning analysis described. Each cell represents the mean
similarity score for a given combination, using a controlled query set and vector retrieval via FAISS.
Higher scores indicate a greater alignment between retrieved content and the expert reference.

Based on these results, the system was configured with a chunk size of 128 tokens
and an overlap of 32 tokens, as this setting provided stable similarity scores with minimal
redundancy. The similarity plateau observed (around ~0.865) should be interpreted as an
internal performance reference that guided parameter tuning in this proof-of-concept
study, rather than as an optimal or benchmark value.

3.1.2 Effects of Preprocessing on Retrieval Quality

The experiment assessed the isolated impact of standard preprocessing techniques
on semantic similarity (cosine similarity with SBERT embeddings) between retrieved an-
swers and gold-standard references, while keeping the retrieval architecture constant
(Figures 5a and 5b). Synonym expansion produced the highest gain, increasing similarity
by +0.0374, the largest delta among all transformations. Lemmatization and punctuation
removal also showed positive contributions (+0.0091 and +0.0082, respectively). Lower-
casing and whitespace collapsing yielded marginal improvements (< +0.002), while dia-
critic stripping showed no measurable effect. None of the tested techniques decreased re-
trieval quality.
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Figure 5. (a) Radar chart comparing semantic similarity (cosine similarity with SBERT embeddings) 590
between retrieved answers and reference answers, with and without each preprocessing technique. 591

Whitespace Cofiapsing

The orange contour represents performance with preprocessing applied; the dashed blue line cor- 592
responds to the baseline (absent). (b) Delta plot showing absolute performance gain (A similarity) 593
for each technique, ordered from highest to lowest. Positive deltas indicate increased semanticalign- 594

ment after applying the corresponding transformation. 595

Based on these results, the system was configured to enable synonym expansion as 59
the only non-trivial transformation. Lemmatization and punctuation removal were also 597
adopted due to their consistent but lightweight benefits, while diacritic stripping and 598
whitespace collapsing were turned off by default. 599

3.1.3 Effects of Temperature and Top-p on Response Quality 600

The experiment examined the impact of sampling temperature and top-p on the se- 601
mantic similarity (cosine similarity with SBERT embeddings) of generated answers, meas- 602
ured both against gold-standard references and the original user question (Figures 6aand 603
6b). Across the entire grid, response similarity to the reference (GA vs. R) remained stable, 604
with most configurations converging around = 0.865. The lowest value was observed at 605
(temperature = 0.6, top-p = 1.0), where similarity decreased to 0.857. In contrast, alignment 606
with the original question (GA vs. Q) varied more. The highest similarity (0.902) occurred 607
at both (0.6, 0.8) and (0.9, 0.8). Configurations with top-p = 1.0 showed lower contextual 608
alignment, with scores around 0.894-0.899. 609
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Figure 6. Heatmaps showing the average semantic similarity (cosine similarity with SBERT embed-
dings) between (a) generated answers (GA) and gold-standard reference (R), and (b) generated an-
swers (GA) and original questions (Q), across different combinations of temperature and top-p val-
ues. Each cell indicates the mean similarity score for a fixed (temperature, top-p) configuration,
based on cosine distance between sentence embeddings. Higher scores represent greater semantic
alignment.

Based on these results, the system was configured with temperature = 0.6 and top-p
=0.8, as this setting achieved the best overall contextual alignment (0.902 GA vs. Q) while
maintaining high factual similarity (0.865 GA vs. R).

3.2 Evaluation of Conversational DSS Agent workflow stages

The results of the stage-specific evaluations of the C-DSS-A enabled a fine-grained
analysis of performance, robustness, and evidential behavior across the decision work-
flow.

3.2.1 Results for the Iterative Clarification Assessment stage

The classification of the proposition “The user question is clear” achieved high overall
performance (Table 3), with accuracy of 0.931, macro-averaged F1 of 0.931, and substantial
agreement across both classes. Precision for Clear was 1.000, while recall was 0.866. For
Unclear, recall reached 1.000 with precision of 0.875. These values indicate that the system
consistently recognized unclear queries, while occasionally misclassifying clear queries as
ambiguous.

Table 3. Performance Metrics for Clarity Classification stage (Clear vs. Unclear)

Precision Recall F1-score Support
Clear 1.000 0.866 0.928 67
Unclear 0.875 1.000 0.933 63
Accuracy 0.931 130
Macro avg 0.938 0.933 0.931 130
Weighted avg 0.939 0.931 0.931 130

The confusion matrix (Figure 7a) shows that most errors occurred when Clear queries
were labeled as Unclear (9 instances), while no Unclear queries were misclassified as
Clear. The QUPC projection (Figure 7b) illustrates that Clear queries concentrated in
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regions of high p and low A, while Unclear queries clustered in areas of higher A values,

particularly near inconsistent or paracomplete regions.
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Figure 7. (a) Confusion matrix comparing the system'’s final classification of the proposition “The
user question is clear” against the ground truth labels (Clear vs. Unclear). The matrix reflects the
asymmetric robustness of the model. The observed misclassifications reveal a conservative ten-
dency, with a stricter evidential threshold for confirming clarity. (b) Two-dimensional representa-
tion of the evidential annotations (u, A) in the QUPC, illustrating the distribution of outputs from
the Iterative Clarification Assessment module. Points are colored according to their final classifica-
tion and plotted against the paraconsistent decision regions derived from Logic Et. The separation
between classes and the concentration near t-lattice diagonals highlight the model’s discriminative
sensitivity to varying degrees of clarity and vagueness.

Based on these results, the module was retained with its default evidential thresholds
(Gee = 0.75), as this setting balanced precision for Clear with maximal recall for Unclear,
ensuring reliable detection of underdetermined inputs.

3.2.2 Results for the Domain Classification stage

The classification of the proposition “The question belongs to [domain]” showed varia-
tion across categories (Table 4). Animal Nutrition achieved precision of 0.818 and recall of
1.000 (F1 = 0.900). Animal Welfare reached precision of 0.600 and recall of 0.947 (F1 =
0.735). Housing and Environment obtained precision of 0.762 and recall of 0.889 (F1 =
0.821). Poultry Health registered precision and recall of 0.813 each (F1 =0.813). No correct
classifications were obtained for Husbandry Practices (F1 = 0.000). Inspection of misclas-
sified cases indicates that this domain was consistently absorbed into semantically related
categories, particularly Animal Welfare and Poultry Health. This behavior likely reflects
the limited representation of Husbandry Practices in the corpus, combined with the se-
mantic proximity of its content to adjacent domains. For the None class (no domain), pre-
cision was 1.000 and recall 0.800 (F1 = 0.889). Overall accuracy was 0.737, with a macro-
averaged F1 of 0.693.

Table 4. Performance Metrics for Domain Classification stage

Precision Recall F1-score Support
Animal Nutrition 0.818 1.000 0.900 18
Animal Welfare 0.600 0.947 0.735 19
Housing and Environment 0.762 0.889 0.821 18
Husbandry Practices 0.000 0.000 0.000* 18
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True label

Nutrition

Welfare

Housing &
Environment

Hushandry
Practices

None

Pouliry Health

Confusion Matrix

None (no domain) 1.000 0.800 0.889 10
Poultry Health 0.813 0.813 0.813 16
Accuracy 0.737 99

Macro avg 0.665 0.741 0.693 99
Weighted avg 0.635 0.737 0.675 99

* No instances correctly classified for this class.

The confusion matrix (Figure 8a) shows that most errors involved confusion between
Husbandry Practices and semantically adjacent categories (Animal Welfare and Poultry
Health). The QUPC projection (Figure 8b) indicates that most accepted classifications oc-
cupied regions of high certainty (p > 0.75, A <0.25), while a few borderline cases appeared
near decision boundaries.

QUPC
Domain Classification Evaluation

Et-Based Classification vs Reference Labels
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Figure 8. (a) Confusion matrix comparing predicted and reference labels for the proposition “The
question belongs to [domain]”, across five poultry production domains and an out-of-domain class
(None). Misclassifications are concentrated in semantically adjacent categories, particularly in Hus-
bandry Practices. Correct abstentions in the None class confirm the system’s capacity to reject uncer-
tain assignments when evidential support is insufficient. (b) QUPC projection of the evidential an-
notations (u, A) associated with domain classification decisions. Most points fall within regions of
high certainty and low contradiction, consistent with valid assignments. The sparse activation near
decision boundaries highlights borderline cases, suggesting residual ambiguity in specific domain
transitions.

Based on these results, the module was retained with the same evidential threshold
(Gee 2 0.75), as this configuration supported robust rejection of out-of-domain queries
while maintaining reliable classification for most domains.

3.2.3 Results for the Domain-Guided Knowledge Retrieval and Answer Generation and Evalu-
ation stages

The comparative evaluation between direct and system-guided queries showed con-
sistent differences in semantic similarity (cosine similarity with SBERT embeddings) as
shown in Figures 9a and 9b. System-mediated responses displayed a higher median sim-
ilarity and reduced variance compared to direct queries, with fewer low-similarity
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outliers. The similarity curve (Figure 10) showed that system queries concentrated around 688

higher similarity values, with a sharper peak near 0.97. 689
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Differences in the Frequency of Similarity Indices: Similarity Indices by Query Type
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Figure 9. (a) Histogram of similarity scores comparing direct queries and system-mediated queries 691
against the gold-standard answers. System responses exhibit a higher concentration of high-simi- 692
larity outputs, with a clear rightward shift in distribution. (b) Boxplot summarizing similarity score 693
distributions for each query type. System-mediated queries show higher median similarity and re- 694
duced variance, indicating more consistent semantic alignment. 695

The similarity distribution and polynomial trend curves (Figures 10 and 11) showed 69
consistent differences across configurations. System-mediated queries concentrated 697
around higher similarity values, with a sharper peak near 0.97, while RAG-only queries 698
also shifted the distribution toward higher alignment compared to the LLM-only baseline. 699
In contrast, the LLM-only setting displayed a flatter and more dispersed distribution, with 700
a larger proportion of low-similarity outputs. The sharper peaks for both RAG and Sys- 701
tem-mediated configurations indicate a higher concentration of well-aligned responses 702
and reduced variance, highlighting the stabilizing effect of knowledge retrieval. 703
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Figure 10. Distribution of semantic similarity coefficients (cosine similarity with SBERT embed-
dings) between generated answers and gold-standard references, across three configurations: LLM
only (blue), LLM+RAG (green), and System-mediated with Logic Et (red).

The polynomial curves further emphasize these overall distribution patterns, making
the relative gains in similarity concentration and reliability more evident when evidential
reasoning is incorporated
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Figure 11. Polynomial trend curves of semantic similarity (cosine similarity with SBERT embed-
dings) between generated answers and gold-standard references, comparing three configurations:
LLM only (blue), LLM+RAG (green), and System-mediated with Logic Et (red).

Evidential judgments (Figures 12a and 12b) showed that 95% of cases fell in high-
certainty regions (u > 0.75, A < 0.25), with most outputs classified as True (V). A minority
were assigned to False (2%), Quasi-false tending to Paracomplete (1%), and Quasi-true
tending to Paracomplete (2%). Approximately 5% of the outputs appeared near contra-
dictory regions, corresponding to marginally lower similarity scores.

QUPC Normalized Distribution
Answer Evaluation of Answers
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Figure 12. a) QUPC projection of the evidential annotations (u, A) for the proposition “The generated
answer is adequate.” Most points concentrate in regions of high certainty and low contradiction,
reflecting confident adequacy judgments. Sparse activation in quasi-inconsistent zones highlights
borderline or semantically ambiguous responses. (b) Normalized distribution of the resulting logi-
cal states, with 95% classified as True (V), and a minority assigned to False (F, 2%), Quasi-false tend-
ing to paracomplete (QF— 1, 1%), and Quasi-true tending to paracomplete (QV—L1, 2%). The distri-
bution reinforces the predominance of reliable outputs and the system's ability to flag marginal
cases with non-extreme logical states.

Table 5 provides illustrative cases where the system flagged generated answers as
inadequate, showing the corresponding user queries, excerpts of the outputs, evidential
judgments (u, A, and Gee), and the user-facing messages that communicate uncertainty in
a neutral and supportive tone.

Table 5. Illustrative Cases of Evidence-Based Inadequacy Judgments

User Generated Evidential User-Facing
Query Answer (excerpt) Judgment Message
What is the recom- Conflicting guide- p=0.61, “Some retrieved infor-
mended broiler diet for lines were re- A=0.12 mation appears incon-
heat stress? trieved, some em- Gee =049 sistent. The answer may
phasizing in- (Inadequate)  need clarification. Please
creased electro- consider refining your

lytes, others
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What is the optimal
temperature for broiler
housing at 21 days of
age?

How often should lit-
ter be replaced in
broiler houses?

Is vaccination against
coccidiosis always re-
quired in broilers?

focusing on energy

adjustment

Broilers at 21 days p=0.64,
should be kept at A=0.39
28 °C; some Gee =0.25
sources also men- (Inadequate)
tion 24-26 °C de-

pending on venti-

lation

Some sources rec- p=0.78,
ommend complete A=017
replacement each Gee =0.61
cycle, others sug- (Inadequate)
gest partial reuse if

treated with dry-

ing agents

Most sources rec- p=0.62,
ommend vaccina- A=0.14
tion for long-cycle Gee =0.48
broilers; some (Inadequate)

query or reviewing the
supporting evidence.”

“Retrieved guidelines
vary across sources.
Please consider review-
ing the suggested ranges
or providing more con-
text for your query.”

“The retrieved evidence
shows differing recom-
mendations. The answer
may depend on farm
conditions— please re-
view the supporting
guidelines.”

“Evidence for this query
is partly inconsistent.
The system combined
both vaccination and

mention prophy- prophylaxis ap-

laxis may suffice proaches —please inter-
under high biose- pret according to your
curity. production context”

Based on these results, the system was configured to operate with retrieval and Logic
Et-based self-assessment enabled by default, as this combination consistently improved
similarity alignment and provided evidential annotations for reliability control.

4, Discussion

This section examines the findings from two complementary dimensions: system-

level tuning experiments that revealed how configuration choices condition retrieval and
generation, and stage-wise evaluations that demonstrated how evidential mechanisms
regulate reasoning across modules. Considered together, these findings outline an inte-
grative perspective on how technical optimization and modular inference interact in shap-
ing the overall behavior of the DSS.

4.1 Implications of System-Level Parameter Tuning Experiments

The experiments conducted as proof-of-concept trials, provided evidence on how
system-level parameters influenced retrieval fidelity, contextual alignment, and the sta-
bility of generative outputs. These results revealed trade-offs that guided the technical
configuration of the DSS and offered methodological insights for the design of RAG pipe-
lines.

The experiments on chunk size and overlap indicate that smaller segments tend to
preserve semantic integrity, reducing the need for redundant overlap. At 256 tokens, ad-
ditional overlap was required to restore retrieval quality, suggesting the presence of a
threshold below which segment boundaries start to fragment contextual cohesion. Very
large chunks of 512 tokens, even with high overlap, showed limited benefit, indicating the
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constraints of relying on size alone to secure retrieval accuracy. These findings highlight 758
that segment configuration is not a neutral choice but a determinant factor for balancing 759
semantic precision, contextual cohesion, and computational cost. 760

The analysis of preprocessing strategies shows that synonym expansion proved par- 761
ticularly influential in bridging lexical gaps between queries and knowledge base content, 762
strengthening retrieval precision through semantic diversification. Lemmatization and 763
punctuation removal also proved beneficial, though to a lesser extent, by reducing mor- 764
phological variability and surface noise that can obscure semantic matches. By contrast, 765
lowercasing, whitespace collapsing, and diacritic stripping offered negligible contribu- 766
tions, indicating that common normalization routines may be redundant in embedding 767
spaces that already capture semantic robustness. The overall absence of negative effects 768
suggests that preprocessing choices can be selectively applied, with meaningful gains con- 769
centrated in a few targeted transformations rather than in broad, indiscriminate normali- 770
zation. 771

The evaluation of generation parameters indicated that factual accuracy remained 772
relatively stable across configurations, while contextual alignment was more sensitive to 773
variation. The performance drop observed at mid-level temperature combined with un- 774
filtered sampling (0.6, 1.0) reflected a weakening of grounding when lexical openness was 775
high. In contrast, settings that paired moderate or high diversity with a constrained nu- 776
cleus, such as (0.6, 0.8) and (0.9, 0.8), improved relevance to user queries without compro- 777
mising fidelity to reference answers. Configurations with top-p = 1.0 confirmed the risk of 778
topic drift, as unrestricted sampling introduced variability that diluted semantic focus. 779
These patterns suggest that balanced decoding strategies, exemplified by the adopted pro- 780
file of temperature = 0.6 and top-p = 0.8, provide a practical equilibrium between deter- 781
minism and contextual flexibility in domain-constrained tasks. 782

As proof-of-concept, these experiments suggested key trade-offs and helped estab- 783
lish a preliminary foundation for subsequent system evaluations. They delineate a meth- 784
odological basis from which broader validations and domain-specific extensions can be 785
pursued, emphasizing that parameter tuning is not a peripheral adjustment but a defining 786
step that conditions the robustness of the DSS. 787

4.2 Evidential Reasoning in Stage-Wise System Evaluations 788

Beyond parameter tuning, the stage-wise evaluation of the C-DSS-A showed how 789
evidential reasoning shaped system behavior across successive modules, revealing dis- 790
tinct patterns of performance and uncertainty management. At the same time, the agent 791
as a whole exhibited a coherent operational profile, with all modules displaying controlled 792
behavior under uncertainty. Logic Et provided the continuous interpretive structure that 793
supported query clarification, domain attribution, and answer validation across stages 794
[14,32]. 795

The system demonstrated high sensitivity to semantic underdetermination during 79
question clarification. Its conservative bias toward flagging inputs as 'Unclear’ was not 797
merely a trade-off, but an intentional mechanism for ambiguity control. By embedding 798
classification within a Logic Et approach, the system preserved the evidential structure of 799
borderline cases, avoiding premature resolution. This behavior prevented uncertain que- 800
ries from propagating unchecked into subsequent inference stages, ensuring that down- 801
stream modules operated on well-formed and contextually interpretable inputs, thereby 802
reducing the risk of hallucinations and erratic responses [11-14]. However, this imbalance 803
between precision and recall in the Clear class also suggests that some genuine queries 804
may elicit unnecessary clarification prompts. While maximizing recall for Unclear inputs 805
ensures robust detection of ambiguity, it introduces a usability concern: repeated clarifi- 806
cation loops could affect user perception of responsiveness, potentially causing frustration 807
when clear questions are unnecessarily flagged. To mitigate this, future work will explore 808
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adaptive calibration of evidential thresholds and dynamic adjustment strategies to mini- 809
mize superfluous prompts while maintaining reliability in detecting truly ambiguous 810
queries. 811
In domain classification, the system exhibited variable performance across catego- 812
ries. Domains such as Animal Nutrition, as well as Housing and Environment, were consist- 813
ently well distinguished. At the same time, Husbandry Practices triggered frequent confu- 814
sion with semantically neighboring categories. This systematic misclassification high- 815
lights challenges for domain categorization. It likely reflects both the impact of the un- 816
derrepresentation of the class (Husbandry Practices, in this case) in the corpus and its se- 817
mantic overlap with closely related domains (Animal Welfare and Poultry Health), which 818
resulted in boundary errors. The absence of inter-rater validation may also have intro- 819
duced annotation noise, underscoring the need for corpus diversification and multi-anno- 820
tator validation to strengthen domain coverage and reliability. Despite these issues, the 821
system demonstrated robust rejection behavior for domainless queries, with the eviden- 822
tial threshold effectively blocking premature assignments. This selective restraint is par- 823
ticularly relevant for LLM-based architectures [36], which often default to overgenerali- 824
zation in the face of ambiguity [8,13]. 825
The comparative distributions further illustrate the incremental contribution of re- 826
trieval and evidential reasoning to answer quality. The flatter and more dispersed curve 827
of the LLM-only baseline reflects a higher incidence of poorly aligned responses, whereas 828
the inclusion of RAG concentrated outputs closer to the reference. The system-mediated 829
configuration, which integrates Logic Et, sharpened this peak, reducing variance and re- 830
inforcing reliability. Although these differences are visually clear, their statistical signifi- 831
cance was not formally tested, and the trends should therefore be interpreted with cau- 832
tion. 833
Ultimately, the system demonstrated that evidential inference plays a central role in 834
enhancing response reliability. When retrieval and Logic Et-based self-assessment were 835
active in the system workflow, responses shifted toward higher semantic alignment with 836
reference answers and exhibited reduced variance. The analysis showed that most outputs 837
were evaluated as highly adequate under the proposition P3, while borderline or contra- 838
dictory cases were correctly flagged through hesitant or inconsistent annotations. Thisev- 839
idential trace, absent in standard generation workflows, introduced a meta-level of inter- 840
pretability that reinforced the trustworthiness of the final output [8,9,14,15]. 841
Taken together, these results demonstrate that Logic Et is not merely an explanatory 842
overlay but a functional mechanism that modulates the system’s behavior. It enables ab- 843
stention, detects vagueness, calibrates domain attribution, and qualifies the generative 844
output, all within a consistent inferential framework. Importantly, it achieves these func- 845
tions without relying on heuristics or hard-coded decision trees [14-16,32,36,37]. 846
From a practical standpoint, this evidential strictness positions the system for real- 847
world deployment in complex poultry production contexts [36,37]. It is relevant for high- 848
stakes scenarios where interpretive caution, traceable reasoning, and the ability to admit = 849
uncertainty are critical requirements [2-5] 850
These findings reinforce the working hypothesis that integrating Logic Et with LLM 851

and RAG architectures enhances reliability and interpretability in decision-support sce- 852
narios. By enabling structured self-assessment and evidential control, the system ad- 853
dresses key limitations of previous approaches, particularly their brittleness in the face 854
ambiguity or contradiction [8,11-13]. The observed behaviors align with prior researchon 855
paraconsistent reasoning in uncertain environments [32], while extending its application 856
to high-level semantic workflows. 857
858
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4.3 Integrative Perspective: From Parameter Tuning to System Behavior

Taken together, the results from the tuning experiments and the stage-wise evalua-
tions converge on a complementary view: parameter tuning defined the conditions for
stable and precise retrieval and generation, while Logic Et qualified and constrained out-
puts under uncertainty. This integration illustrates that robustness emerges not from iso-
lated components, but from their interaction. It also underscores that technical optimiza-
tion alone is insufficient; without evidential reasoning, the system would remain vulner-
able to contradiction, while Logic Et itself depends on a calibrated retrieval pipeline.

In this respect, the proposed framework diverges from recent LLM+RAG ap-
proaches. While those systems improve contextual reasoning and factual grounding, they
still rely on classical logic assumptions and lack mechanisms to formally manage contra-
dictory or incomplete evidence [8,11-13]. By adding Logic Et, the present architecture in-
troduces explicit evidential quantification and structured self-assessment, enabling the
system to qualify ambiguous inputs and outputs rather than force binary resolutions [14-
16,18]. This contrast clarifies that the contribution of the study is not a replacement of
existing RAG pipelines, but their extension with contradiction-tolerant reasoning, ori-
ented toward explainable and trustworthy decision support in poultry production.

4.4 Limitations and Future Work

While the system exhibited coherent and controlled behavior across all inference
stages, some important limitations must be acknowledged.

The experimental design relied on a restricted sample size and a limited evaluation
scope, which constrains the transferability of the findings. These experiments should
therefore be regarded as proof-of-concept trials to test the feasibility of combining LLMs
and RAG with Logic Et under controlled conditions, rather than as large-scale validation.
In particular, the evaluation of chunk size and overlap was restricted to a narrow set of
parameter configurations and metrics, without validation across different poultry produc-
tion domains. Future work will expand the parameter range and validate chunking strat-
egies in multiple domains to improve robustness and generalization.

Another limitation concerns the representativeness of the knowledge base used in
the RAG pipeline. The current corpus was intentionally restricted to a small and homoge-
neous set of documents, which enabled controlled testing but limited the diversity of con-
texts and production scenarios represented. This restriction may affect retrieval perfor-
mance and response reliability. In addition, domain classification was conducted by a sin-
gle annotator without inter-rater validation, and cross-domain materials were reduced to
a dominant category. The block segmentation strategy, optimized with synthetic QA data,
has also not yet been validated for semantic integrity in long technical documents. Future
work should expand the knowledge base with more diverse sources including manuals,
scientific literature, regulatory guidelines, and field reports, while ensuring balance across
document types, timeframes, and regions. Multi-annotator validation and extended seg-
mentation assessments will also be incorporated to strengthen corpus reliability and se-
mantic fidelity.

The system has not yet been validated by domain experts nor tested in real produc-
tion environments. The current implementation should therefore be regarded as an early-
stage prototype, evaluated under controlled conditions. Next steps should prioritize par-
ticipatory assessments with poultry specialists and in-situ deployments to assess usabil-
ity, robustness, and contextual adaptability. From an operational perspective, deployment
feasibility is constrained by available computing resources. Performance testing, includ-
ing stress scenarios, will be required to validate scalability, and farms with limited infra-
structure may still require hybrid cloud-based solutions. Large-scale deployment will also
require optimization to support thousands of concurrent queries and integration with
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sensor-driven alarm systems, ensuring timely responses in intensive production environ-
ments. Such evaluations are crucial for consolidating operational maturity and refining
evidential thresholds in response to practical decision-making demands. In parallel, fu-
ture work may explore adaptive calibration strategies for domain boundaries and clarity
thresholds, as well as pathways for generalization beyond poultry production.

Finally, although evidential reasoning improved robustness against uncertainty and
contradictions, the system has not yet been stress-tested under adversarial, hostile, or mul-
tilingual queries. These scenarios represent potential points of failure and should be in-
cluded in future evaluations to better characterize resilience beyond the controlled set-
tings adopted here. Future work will also include comprehensive comparisons with ex-
isting DSS approaches, as well as direct baselines with standard RAG implementations
such as Haystack and the LangChain default pipeline, together with RAG+LLM systems
without evidential reasoning, to contextualize the impact of the proposed framework and
preprocessing strategies.

5. Conclusions

This study demonstrated that integrating Large Language Models, Retrieval-Aug-
mented Generation, and Paraconsistent Annotated Evidential Logic Et enables the con-
struction of an interpretable and contradiction-tolerant decision support system for poul-
try production. By embedding evidential reasoning at each stage of the conversational
workflow, the Decision Support Al-Copilot for Poultry Farming showed promising be-
havior in terms of semantic alignment, inference under uncertainty, and domain attribu-
tion. The architecture avoided heuristic shortcuts, relying instead on structured logical
evaluation to handle ambiguous or borderline cases. In this context, the present work con-
tributes to the field of Al-based decision support in agriculture by introducing an integra-
tive, multi-domain, knowledge-grounded, and contradiction-tolerant approach tailored
to the specific demands of poultry production.

At the same time, the system should be regarded as a proof-of-concept prototype
rather than a fully validated tool. The results reported here were obtained under con-
trolled conditions with a restricted corpus and evaluation scope, and further work is re-
quired to establish robustness, scalability, and usability in real production environments.
These constraints temper the immediate applicability of the findings but reinforce the
value of the study as a methodological foundation.

Finally, this study outlined a roadmap for future validation of the framework and
indicated opportunities to extend its scope to other livestock species. By clarifying the
limitations and future directions, the research provides both a conceptual contribution
and a practical agenda for advancing evidentially guided decision support in agriculture.
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3.4 Cross-Study Discussion

This dissertation, structured in three articles, outlines a research trajectory
focused on the overarching objective of building and evaluating a DSS to support
decision-making in intensive poultry farming, capable of operating under uncertainty
and informational contradiction. The discussion presented not only synthesizes the
results but interprets them in light of the current challenges of decision-making in
intensive poultry farming that the proposed DSS seeks to address.

Critical mapping of the state of the art revealed these challenges. By typifying
existing DSS, their domains of application, and their limitations, the research
highlighted a strong focus on short-term operational decisions, with a predominance
of real-time monitoring and automation systems (Godinho et al., 2025; Neethirajan,,
2025; Li et al.,, 2020), and little or no attention to the tactical and strategic layers (Zhai
et al.,, 2020).

It was also observed that, although poultry farming domains such as Housing
and Environmental Control, Animal Nutrition, Poultry Health, Husbandry Practices,
and Animal Welfare are interdependent, interoperability between them is virtually
absent in the systems evaluated (Hafez; Attia, 2020). This reduces the systemic value
of DSS, since their practical effectiveness depends not only on algorithmic
sophistication, but also on their ability to integrate with production processes, offer
interpretable and actionable recommendations, and align with the actual decision-
making context.

This review of the state of the art also highlighted the originality and innovation
of this research, which is part of an ongoing conceptual shift marked by the emergence
of approaches based on language models and textual decision support (Lewis et al.,
2021). These approaches shift the focus from purely numerical inference to
knowledge-based support, with an emphasis on generating understandable
explanations.

This exploratory phase of the research was presented in Article 1, fulfilling the
objective of mapping and systematizing DSS focused on environmental control in
poultry farming, and its findings guided the design of the final architecture of the
proposed DSS.

Subsequent experimental investigations have shown that the main limitation to
the use of language models in intensive poultry farming goes beyond occasional

hallucinations (Ji et al., 2023, Metze et al., 2024). The central obstacle lies in
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contextual specificity, a result of the restrictions imposed by the bodies of knowledge
used in LLM training, which compromises their ability to operate in highly specialized
domains and hinders the advancement of emerging trends based on these models.

Going beyond this diagnosis, the experiments consolidated in Article 2 advanced
to a systematic evaluation of the effect of augmented retrieval on the quality of
responses. This stage of the investigation demonstrated measurable gains in stability
and semantic alignment between the responses generated by the LLM using the RAG
technique and the specialized references (lzacard & Grave, 2021; Li et al., 2022).
These results indicated a partial mitigation path for the identified obstacle.

To fully address these limitations, the original LLM-based architecture with RAG
is extended by incorporating Logic ET. Thus, as presented in Article 3, the
methodological proposal integrates three components with distinct and
complementary functions. LLM provides the ability to semantically interpret and
generate responses in natural language, bridging the gap between the technical
vocabulary present in the knowledge base and the way the producer formulates their
questions. RAG implements contextual processing by restricting the LLM's reasoning
space to a subset of relevant documents, expanding the coverage of specialized
knowledge and reducing the variance of responses. Finally, Logic ET1 introduces formal
conditions for the use of retrieved knowledge by transforming evidence into explicit
degrees of certainty and contradiction.

In this way, the DSS that is the subject of this research was designed as a
knowledge-based conversational agent that integrates, in a continuous flow, semantic
interpretation, contextual processing, and evidential inference with explicit thresholds
of certainty defined experimentally. In such architecture, LLM and RAG are
responsible for linguistic and contextual competence, while Logic ET governs the
decision-making process by determining when the system can affirm, doubt, hesitate,
or refuse a response. Article 3 examined this systemic dimension by demonstrating
that the DSS incorporates an inference module capable of qualifying the reliability of
responses through degrees of certainty and contradiction.

The ability to explicitly deal with thresholds of uncertainty and contradiction
distinguishes the proposed DSS from approaches based solely on probability or
heuristic confidence thresholds. Logic ET allows for the representation of paracomplete
states, in which a lack of information predominates, and paraconsistent states, in
which favorable and unfavorable evidence coexist in a relevant way, without forcing

the system to produce unduly definitive conclusions.
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Acting as a guardrail, the use of conservative certainty and contradiction
thresholds prevented unclear queries from advancing to the retrieval and generation
stages, functioning as a deliberate barrier against the spread of ambiguity throughout
the inferential flow. The same mechanism validated the responses produced: the
system not only generated an output but also evaluated whether it was acceptable
considering the available evidence. When the degree of certainty fell below the
threshold, the response was not treated as simply weak; it was flagged as potentially
inadequate and communicated to the user as a result of insufficient or contradictory
evidence.

These mechanisms translated into concrete behaviors observed in the
experiments. When faced with ignorance, the system reported that the question was
outside its scope and avoided fabricated answers. When the question was unclear, it
requested clarification rather than proceeding with an arbitrary interpretation. When
there was high contradiction, it identified conflict between sources and marked the
answer as hesitant or conditional, making competing interpretations explicit. In all
these situations, inference guided by the Logic ET framework prevented decision
collapse and transformed hesitation into useful information. Thus, instead of treating
poorly formulated questions as noise, the system converted uncertainty into explicit
action through cycles of meta-questions guided by propositions.

Like any knowledge-based model, the proposal has limitations. Performance
remains dependent on the quality and scope of the corpus used, and robustness in
the face of queries outside the scope depends on continuous improvement of curation.
Furthermore, the behavior of the system in real operating environments still needs to
be investigated, especially regarding the dynamics of use by producers, linguistic
variations, and integration with heterogeneous technological infrastructures.

From the perspective of this dissertation, the results allow us to conclude that the
system manages uncertainty but does not eliminate it. Even after optimizing the RAG
pipeline and integrating Logic ET, a minority of responses remain close to ambiguous
or contradictory zones. The difference is that these cases are no longer invisible: they
become identifiable, traceable, and subject to conscious intervention, either through
corpus curation or by adjusting the DSS operational parameters.

Taken together, the results indicate that the overall objective was consistently

achieved and that the specific objectives were addressed in a coordinated manner.
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CHAPTER IV

4 FINAL CONSIDERATIONS

4.1. Conclusions

The trajectory developed in this dissertation demonstrated that the integration of
contextual generation and interpretation, retrieval of verifiable information, and
structured representation of uncertainties and contradictions constitutes a consistent
way to increase the reliability of decision support systems applied to intensive poultry
farming.

For intensive poultry farming, this approach broadens the scope of DSS by
shifting the focus from strictly short-term operations and incorporating
recommendations aligned with tactical and strategic levels. The ability to translate
specialized technical knowledge into understandable responses, while maintaining
explicit control over the uncertainties inherent in the production process, reinforces the
usefulness of the system in an environment marked by informational complexity and
the need for quick and consistent decisions.

The results support practical implications and research developments. From an
applied perspective, the dissertation indicates that it is technically feasible to offer
poultry producers a conversational agent capable of answering technical questions in
multiple domains, with explicit uncertainty and contradiction, provided that a curated
knowledge base, fulfilling the general objective proposed for the work.

In intensive production contexts, such DSS can operate as a complementary
layer to existing management platforms, offering interpretive narrative, screening
recurring questions, and support in reading technical documents, without attempting
to replace the judgment of experts.

From a scientific point of view, the research program outlines a concrete agenda
that includes improving recovery mechanisms to mitigate situations in which the LLM
compromises the quality of responses; rebalancing the knowledge base to increase
accuracy in domain classification; systematic comparison with conventional RAG
pipelines and classic DSS; and expanding the Logic ET framework to other agricultural
and industrial sectors.

This brings us to the central contribution of this work, which is to understand

decision-making under uncertainty and contradiction not as an unwanted anomaly, but
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as an ordinary condition of operation that must be modeled, quantified, and made

explicit.

4.2. Recommendations for Future Work

For future work, promising directions include conducting field studies, testing with
expanded knowledge bases, comparing the approach with other hybrid models,
investigating adaptive mechanisms capable of adjusting certainty and contradiction
thresholds based on query behavior, and exploring the integration of numerical data,

environmental sensors, and textual evidence within unified decision-making cycles.
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