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RESUMO

A crescente demanda por eficiéncia e padronizacdo no setor agroalimentar tem
impulsionado a adoc¢ao de tecnologias da Agricultura 4.0. Nesse contexto, a aplicacéo
de técnicas de visdo computacional e aprendizado profundo desponta como
alternativa estratégica para modernizar cadeias agroalimentares. Este estudo avaliou
a aplicacdo da arquitetura YOLOV8 na identificacdo automatica de variedades de
pimentas (Capsicum spp.) com o desenvolvimeno adicional de um aplicativo mével
(PWA) que integra o modelo treinado, oferecendo suporte interativo por meio de um
chatbot. Para tanto, foi construido um dataset inicial de 1.476 imagens coletadas na
CEAGESP e em repositorios publicos, anotadas e expandidas por meio de técnicas
de data augmentation, o que totaliza 3.964 imagens. O modelo foi treinado em dois
cenarios (com e sem augmentation) e avaliado pelas métricas Box Precision, Recall,
MAP50 e mAP95. Os resultados evidenciaram que o0 uso de augmentation elevou a
robustez do modelo, alcangando um mAP50 de 0,694 e mitigando riscos de overfitting.
Além do desempenho experimental, a pesquisa apresenta a implementacéo funcional
de um aplicativo mével capaz de classificar pimentas em tempo real, integrando
informacdes adicionais sobre pungéncia e usos culinarios.

Palavras-chave: Agricultura 4.0; Aumento de dados; Identificagéo de Pimentas; Visao
Computacional; YOLOvS.



ABSTRACT

The growing demand for efficiency and standardization in the agri-food sector has
accelerated the adoption of Agriculture 4.0 technologies. Within this context, computer
vision and deep learning have emerged as strategic tools to modernize food supply
chains. This study evaluated the application of the YOLOvV8 architecture for the
automatic identification of pepper varieties (Capsicum spp.) and developed and
implemented a mobile application (PWA) that integrates the trained model, providing
interactive support through a chatbot. To this end, an initial dataset of 1,476 images
was collected from CEAGESP and public repositories, annotated, and expanded using
data augmentation techniques, resulting in 3,964 images. The model was trained
under two scenarios (with and without augmentation) and evaluated using Precision,
Recall, mAP50, and mAP95 metrics. Results demonstrated that augmentation
significantly improved model robustness, achieving a mAP50 of 0.694 and reducing
the risk of overfitting. Beyond experimental outcomes, this research presents the
functional implementation of a mobile application capable of classifying peppers in
real-time while providing additional information on pungency and culinary
applications..

Keywords: Agriculture 4.0; Computer Vision; Data augmentation; Pepper varieties
classification; YOLOvVS.



UTILIDADE

A utilidade desta dissertacéo esta em disponibilizar um conjunto de dados e um
modelo de classificagdo de pimentas, modelo que pode apoiar pesquisas futuras e
aplicacbes praticas na Agricultura 4.0. O estudo pode contribuir para maior
padronizacdo em mercados atacadistas, para reducao de perdas e para alinhamento
as metas dos Objetivos de Desenvolvimento Sustentavel. Além disso, esta pesquisa
se alinha a compromissos globais estabelecidos pela Organizacdo das Nacdes
Unidas (ONU) por meio dos Objetivos de Desenvolvimento Sustentavel (ODS). A
proposta de automatizar a identificacdo de variedades de pimentas contribui
diretamente para o ODS 2: Fome Zero e Agricultura Sustentavel, ao apoiar a
modernizagdo da producgdo agricola com maior eficiéncia e qualidade. Também esta
relacionada ao ODS 9: Industria, Inovacao e Infraestrutura, por promover a adocao
de tecnologias digitais emergentes, como visdo computacional e inteligéncia artificial,
no setor agroalimentar. Finalmente, colabora com o ODS 12: Consumo e Producao
Responsaveis, ao fortalecer mecanismos de rastreabilidade e reduzir perdas
decorrentes de falhas humanas na classificagao de produtos (ONU, 2015).
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CAPITULO |

1 CONSIDERAC}@ES INICIAIS

A agricultura desempenha papel estratégico na economia nacional e
internacional; detaca-se como um dos setores mais competitivos do pais. De acordo
com a FAO (2024), no setor dos condimentos, para exemplo, a produ¢cao de pimentas
(Capsicum spp.) alcancou mais de 812 mil toneladas globalmente em 2022, e o Brasil

€ o responsavel por aproximadamente 128 mil toneladas do produto.

Nos ultimos anos, a presséo por aumento de produtividade, por reducéo de custos
e por adocdo de praticas mais sustentaveis tem intensificado a busca por solu¢des
inovadoras, em consonancia com os Objetivos de Desenvolvimento Sustentavel
(ODS) estabelecidos pela ONU (2015). Nesse contexto, a Agricultura 4.0 desponta
como paradigma que integra tecnologias digitais, como internet das coisas (loT),
inteligéncia artificial (IA) e big data, o que amplia o alcance da Industria 4.0 para os
sistemas agroalimentares (TIAN et al., 2020; JAVAID et al., 2022).

Entre as tecnologias emergentes, a visdo computacional baseada em inteligéncia
artificial tem se consolidado como uma ferramenta estratégica para a agricultura, ao
possibilitar a automatizacéo de tarefas tradicionalmente dependentes de méo de obra
intensiva. Estudos recentes apresentam a aplicacdo de técnicas de visédo
computacional com aprendizado profundo em diferentes contextos agricolas, com
evidéncia de reducdo de erros associados ao trabalho manual e de aumento da
consisténcia nos resultados. Por exemplo, Dhanya (2022) apresentou abordagens
profundas que automatizam operacdes agricolas com alta precisdo, enquanto Taneja
et al. (2023) destacaram como a inteligéncia artificial melhora a eficiéncia, reduz o

desperdicio e fortalece a qualidade no setor agroalimentar.

No caso das pimentas, a elevada diversidade morfolégica entre variedades,
somada ao grande volume comercializado em centrais atacadistas, como a
CEAGESP, torna a classificagdo manual especialmente vulneravel a inconsisténcias,

fato que reforga a necessidade de solugfes tecnoldgicas inovadoras.

1.1 Introducéao
Esta pesquisa insere-se no contexto da Agricultura 4.0, marcada pela integracao
de tecnologias digitais e inteligéncia artificial ao setor agroalimentar. Para manter o
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foco da Introducédo e evitar redundancias, o aprofundamento conceitual e historico
sobre Agricultura 4.0, visdo computacional e a evolucdo dos detectores de objetos,
com a incluséo da familia YOLO, encontra-se detalhado no Capitulo 1l. Em termos de
relevancia social, o trabalho dialoga diretamente com os Objetivos de
Desenvolvimento Sustentavel, em especial o0 ODS 2, o ODS 9 e o ODS 12, ao

promover inovacao tecnoldgica, eficiéncia produtiva e padronizacdo de processos.

1.2 Justificativa

A aplicacao de técnicas de visdo computacional na agricultura ndo se restringe
a identificacdo de variedades de pimentas. Diversos estudos tém explorado o
potencial das CNNs em tarefas como classificacdo de sementes (KURTULMUS,
ALIBAS e KAVDIR, 2016), deteccdo de doengas em folhas (ZENG et al., 2021) e
sistemas inteligentes de classificagdo em linhas de produgdo (MOHI-ALDEN et al.,
2022). Esses avancos reforcam a aplicabilidade do aprendizado profundo para

resolver gargalos de eficiéncia e qualidade na agricultura de precisao.

Nesse sentido, o desenvolvimento de um protétipo de aplicativo movel que
integre 0 modelo treinado amplia a relevancia prética da investigacao, pois permite a
aplicacao direta em campo e em ambientes comerciais. Essa proposta também se
alinha a Engenharia de Producado, ao contribuir para processos de padronizacao,
reducdo de falhas humanas e otimizacdo de cadeias agroalimentares intensivas em
mao de obra (KAMILARIS e PRENAFETA-BOLDU, 2018).

Por fim, embora a literatura recente evidencie avangos em visdo computacional
aplicada a agricultura, observa-se escassez de estudos dedicados especificamente a
classificacdo automética de variedades de Capsicum spp. em ambientes comerciais
de larga escala, como a CEAGESP. Essa lacuna fundamenta o presente trabalho,
gue busca a preencher com a aplicacdo do YOLOV8, associada ao desenvolvimento

de um protétipo de aplicativo mével.

Diante disso, surge a questao que norteia esta pesquisa: Como aplicar e avaliar

a arquitetura YOLOVS8 na identificagdo automética de variedades de Capsicum spp.

17



em ambientes comerciais de alta complexidade e integra-la aum protétipo de

aplicativo mével voltado ao uso pratico?

1.3 Objetivos

1.3.1 Objetivo Geral
Avaliar a aplicabilidade da arquitetura YOLOV8 na identificacdo automatica de
variedades de pimentas e desenvolver um aplicativo mével que integre o modelo

treinado, com a permisséo de seu uso pratico em tempo real.

1.3.2 Objetivos Especificos

A. Construir e organizar um dataset de imagens de variedades de
pimentas coletadas na CEAGESP e complementadas com bases abertas.

B. Avaliar o desempenho da arquitetura YOLOv8 em cendrios com e sem
data augmentation, com a consideracdo de métricas, como Box
Precision, Recall, mAP50 e mAP95.

C. Desenvolver e validar um protétipo de aplicativo movel que integre o
modelo YOLOvV8, com classificacdo em tempo real e informacdes

adicionais por meio de um chatbot.

1.4 Metodologia Resumida
Esta pesquisa adota uma abordagem aplicada e experimental, voltada a

Y

avaliacdo de técnicas de visdo computacional aplicadas a agricultura,
especificamente a classificacdo automética de variedades de Capsicum spp.. O
estudo envolve trés etapas principais: a construcdo de um dataset de imagens, a
avaliacao experimental da arquitetura YOLOv8 em diferentes cenarios de treinamento
e o desenvolvimento de um protétipo de aplicativo movel. A opgdo por detalhar
minuciosamente cada etapa metodolégica encontra respaldo em Gil (2018), que
postula que a clareza dos procedimentos € fundamental para contibuir com a

replicabilidade do estudo, um pilar da pesquisa cientifica.

1.5 Organizagéao estrutural da pesquisa
A dissertacdo esta organizada em cinco capitulos. O Capitulo 1 apresenta a

contextualizacdo do tema, a justificativa, os objetivos e uma metodologia resumida. O
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Capitulo 2 retne o referencial teérico sobre Agricultura 4.0, visdo computacional,
aprendizado profundo, redes neurais convolucionais e a evolucao da familia YOLO,
além de abordar as caracteristicas das pimentas e os desafios da classificacédo
automatica. O Capitulo 3 descreve os procedimentos de revisdo de literatura e de
coleta de dados que fundamentam a pesquisa. Conforme ilustrado na Figura 1, o
Capitulo 4 apresenta o0s resultados parciais e a discussdo. Ele abrange a
disponibilizacdo do dataset (objetivo especifico A), a aplicacdo e a avaliacéo
experimental do modelo YOLOvV8 (objetivo especifico B) e o desenvolvimento do
protétipo de aplicativo mével (objetivo especifico C). O artigo cientifico que detalha
parte desses resultados encontra-se integralmente apresentado no Anexo A. O

Capitulo 5 apresenta as conclusfes parciais.

Figura 1- Relacgéo entre objetivos especificos e resultados da pesquisa

Dataset' —
T | obietwoespeciieon l\
'Dispmbiizagiopafa'/'_/ N\
Downiozd Desemmolvimentodo |
k n' Py
e | erotétipo
\ / ;/
\\ Objetivos especificos /ﬁi/l ——
x o ; 2
'ﬁ\‘ Resultades da Objetivo Especifico C | — :'gtg':;aom
Pesq.isa —_— S \
Modelo YOLOVE | / —
_/“
Analise de Apiicabilidade

Fonte: A autora (2025).
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CAPITULO Il

2 REFERENCIAL TEORICO

2.1 Agricultura 4.0 e contexto global

No setor agroalimentar, a Agricultura 4.0 apresenta-se como vetor estratégico
para a modernizag&o das cadeias de suprimento, o0 que permite o uso de ferramentas
como internet das coisas (loT), inteligéncia artificial (IA), sensores inteligentes e
analise em tempo real para apoiar a tomada de decisdo (SUBEESH e MEHTA, 2021).
Essas tecnologias possibilitam maior rastreabilidade, reducéo de perdas e otimizacao
no uso de recursos naturais; alinham-se as diretrizes globais de sustentabilidade
(OLIVEIRA e SILVA, 2023).

A convergéncia entre a Indastria 4.0 e os sistemas agroalimentares ampliou a
consolidacéo do termo AgriFood, que enfatiza a transformacéo digital das cadeias
agroalimentares em toda a sua extensdo, da producdo agricola ao processamento,
da distribuicdo ao consumo final. Essa perspectiva destaca o papel das tecnologias
digitais e verdes como elementos essenciais para acelerar o cumprimento dos
Objetivos de Desenvolvimento Sustentavel (ODS), ao promover praticas agricolas
mais resilientes, eficientes e ambientalmente responsaveis (LEZOCHE et al., 2020;
HASSOUN et al., 2022).

O Brasil, enquanto uma das maiores poténcias agroalimentares globais,
desempenha papel central nessa transformacdo. A adocdo de solucdes digitais
apresenta potencial significativo de impacto econémico e social, ao se considerar a
extensao territorial e a diversidade de cultivos do pais (EMBRAPA, 2020). Nesse
contexto, mercados atacadistas, como a Companhia de Entrepostos e Armazéns
Gerais de S&o Paulo (CEAGESP), assumem papel estratégico, dado o volume e a
diversidade de hortifrutigranjeiros movimentados. A classificacdo e a padronizacao de
produtos nesses entrepostos configuram um gargalo logistico que pode ser mitigado

pela aplicacéo de tecnologias da Agricultura 4.0.

Assim, a Agricultura 4.0 e, em sentido ampliado, o conceito de Agri-Food 4.0,
devem ser compreendidos ndo apenas como instrumentos de ganho de

produtividade, mas também como vetores de sustentabilidade, inovacdo e
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competitividade. Ao integrar inteligéncia artificial, visdo computacional e sistemas
moveis, tais iniciativas contribuem para a eficiéncia operacional e para a
transformacao das cadeias agroalimentares em direcdo a modelos mais sustentaveis

e inovadores.

2.2 Visado computacional na Agricultura

A visdo computacional (VC) constitui um campo da inteligéncia artificial voltado
para a interpretacdo automatizada de imagens e videos digitais, com o objetivo de
extrair informacdes relevantes para processos de tomada de decisdo. Nos ultimos
anos, avangos em capacidade computacional e algoritmos de aprendizado profundo
possibilitaram a aplicacdo da VC em contextos complexos e isto supera limitagdes de
meétodos tradicionais baseados em extracdo manual de atributos (WANG e KANG,
2025).

A ascensdo da Agricultura 4.0 é intrinsecamente ligada aos avangos em
inteligéncia artificial, notadamente no campo da VC. Esta disciplina consolidou-se
como um pilar tecnoldgico para a automacéo e a otimizacao de processos agricolas,
0 que permite que sistemas computacionais interpretem e extraiam significado de
dados visuais para a execucao de tarefas com elevada precisdo. RevisGes recentes
destacam a diversidade de aplicagdes; incluem identificacdo de doencas em plantas,
classificacdo de frutos e sementes, deteccdo de plantas daninhas e estimativa de
produtividade (CAO, SUN e BAO, 2025).

A manutencdo de elevada precisdo e velocidade em sistemas de deteccéo
aplicados a ambientes agricolas complexos constitui um importante eixo de
investigacdo. Nesse contexto, Li et al. (2021) propuseram uma versao aprimorada do
modelo YOLOv4-tiny para a deteccdo em tempo real de pimentas verdes, fato que
busca mitigar problemas decorrentes de oclusées severas por galhos e folhas, bem
como da significativa variacdo de escala dos alvos. O modelo aprimorado incorporou
predicdo em multiplas escalas e um mecanismo hibrido de atengé&o e isto alcangou
desempenho expressivo, com 95,11% de precisdo meédia, 0 que indica adequacéo

para implementacdo embarcada em sistemas roboticos agricolas.

No campo do diagnéstico de fitopatologias, definido como o estudo de doencas
gue comprometem o ciclo biolégico das plantas, Bezabh et al. (2023) indicaram o

modelo CPD-CCNN, uma rede convolucional concatenada que se deriva das
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arquiteturas VGG16 e AlexNet. O objetivo consistiu na classificacdo de doengas que
afetam plantas de pimenta, entre elas ferrugem comum, mancha foliar e podridado do
fruto, com a superacdo da limitacdo de abordagens anteriores centradas em

classificacdes binarias. O modelo alcancou precisédo de 95,82 por cento.

Por sua vez, Zeng et al. (2021) desenvolveram um modelo de deep learning
baseado em redes neurais convolucionais (CNNs) para a detecgédo de doengas em
folhas de pimenta. O estudo utilizou um conjunto de dados que contém 2.478 imagens
e aplicou técnicas de transferéncia de aprendizado para aprimorar a precisao
diagnostica em condigdes reais de cultivo. O modelo atingiu 99,55% de acurécia na
identificacdo de folhas sadias e doentes, 0 que demonstra sua aplicabilidade pratica

para deteccao precoce de doencas na agricultura

Embora estudos recentes ampliem o uso de visdo computacional na cadeia
produtiva da pimenta, trabalhos anteriores ja indicavam a aplicabilidade dessas
técnicas. Kurtulmus et al. (2016) analisaram sementes de pimenta por meio de
extracdo de caracteristicas de cor, forma e textura e classificaram os dados com um
perceptron multicamadas. A acurécia obtida foi de 84,94 por cento, o que indica a
aplicabilidade de métodos de aprendizado profundo desde etapas iniciais da

producéao.

Pesquisas também sugerem que a integracdo da VC com redes neurais
convolucionais e algoritmos de deteccdo de objetos potencializa a robustez das
andlises e permite o seu uso em ambientes ndo controlados. Upadhyay (2025), em
uma revisdo abrangente, aponta que técnicas de deep learning aplicadas a deteccéo
de doencas em plantas, com imagens RGB, multiespectrais e hiper espectrais,
oferecem resultados de alta precisdo, com potencial para diagndsticos precoces e
ndo destrutivos. Essa caracteristica é particularmente relevante para cadeias de

producgéo agricola que demandam rapidez e confiabilidade na tomada de deciséo.

Apesar dos avancos, a adocdo da VC na agricultura enfrenta desafios
significativos. Entre eles destacam-se a necessidade de grandes conjuntos de dados
anotados, a variabilidade de condi¢cbes ambientais (iluminacdo, angulo de captura,
clima) e a elevada demanda computacional de alguns modelos, o que pode dificultar
aimplementacdo em dispositivos moéveis e sistemas distribuidos (MIN, 2025). Para

mitigar essas limitacdes, a literatura recente aponta para solugdes, como aprendizado
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auto supervisionado, modelos leves otimizados para edge computing e a fuséo
multimodal de dados provenientes de diferentes sensores (SORNAPUDI e SINGH,
2024).

Portanto, a visdo computacional na agricultura representa uma das areas mais
promissoras da Agricultura 4.0, ao possibilitar ganhos em eficiéncia, sustentabilidade
e padronizacdo de processos, ainda que dependa de continuos avancos técnicos e
da superacédo de barreiras operacionais para sua plena integracdo em ambientes de

producéo.

2.3 Aprendizado Profundo e Redes Neurais Convolucionais (CNNs)

O aprendizado profundo, ou deep learning, consolidou-se como paradigma
dominante nas aplicagbes de VC, o que viabiliza a extragdo automatizada de
caracteristicas visuais sem depender de processamento manual por parte do
pesquisador (EL SAKKA, 2025).

Entre as arquiteturas de deep learning, as redes neurais convolucionais (CNNSs)
destacam-se por sua capacidade de aprender hierarquias espaciais complexas, por
meio de operacdes de convolucao, ativacédo e reducdo de dimensionalidade. Elas
permitem reconhecer padrdes visuais, desde bordas até estruturas sintéticas de alto

nivel, diretamente em dados de imagem (LEITE, 2024).

No ambito agricola, as CNNs tém sido aplicadas com sucesso em tarefas como
deteccdo de doencas em plantas, identificacdo de pragas, classificacdo de estagios
de crescimento e monitoramento de colheitas. El Sakka (2025) aponta que modelos
baseados em deep learning superam métodos tradicionais como k-means e Maquina
de Vetores de Suporte (SVM) em diversos cenarios agroalimentares, especialmente

guando se busca robustez e inovacdo em condi¢cdes visuais adversas.

Em atividades, como a identificacdo de estresse hidrico ou sanidade vegetal,
CNNs tém se mostrado eficazes ao processar imagens obtidas via drones, sensores
remotos e cameras multiespectrais. As redes aceleram diagndésticos e favorecem
decisbes em tempo real (KESKES, 2025). No entanto, a adogao dessas redes no
campo ainda enfrenta limitagbes relevantes, uma vez que a coleta e a anotagéo de
grandes bases de dados demandam alto esfor¢co e conhecimento especializado. Além
disso, os modelos costumam ser computacionalmente intensivos, o que restringe sua

execucao em dispositivos de borda (edge computing). A revisdo de Hossen (2025)
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sobre transferéncia de aprendizado destaca que o uso de modelos pré-treinados
reduz esses obstaculos e viabiliza seu emprego em aplicacdes com menos dados e

infraestrutura limitada.

Em sintese, as CNNs representam a espinha dorsal do deep learning aplicado
a agroecologia e sdo decisivas para conectar a teoria de IA a pratica da Agricultura
4.0. No entanto, seu uso exige mecanismos de adaptacdo (como transferéncia de
aprendizado e modelos leves), sobretudo em contextos com dados escassos ou

recursos computacionais limitados.

2.4 Modelos de Deteccédo de Objetos

Os modelos de deteccdo de objetos representam um avanco significativo da
visdo computacional, pois combinam tarefas de localizacdo e classificagdo em
imagens digitais. Essa capacidade é fundamental em contextos agricolas, em que se
busca identificar ndo apenas a presenca de um fruto, folha ou praga, mas também
sua posicao e sua quantidade em uma cena (ZHANG et al., 2021).

Historicamente, os detectores de objetos foram divididos em duas categorias
principais. O primeiro grupo inclui modelos two-stage, como o Faster R-CNN, que,
primeiro, gera regides de interesse; depois, realiza a classificacdo e apresenta
elevado nivel de precisdo, mas com custo computacional mais alto (REN et al., 2015).
O segundo grupo engloba os modelos one-stage, como YOLO, SSD, RetinaNet e
EfficientDet, que realizam deteccdo e classificacdo em uma Unica etapa, 0 que
proporciona maior velocidade de inferéncia com desempenho competitivo (TAN e LE,
2020).

No setor agricola, os modelos de dois estagios (two-stage), como o Faster R-
CNN, tém sido aplicados com sucesso no diagnostico de doencas e na identificacédo
de pragas e o fato demonstra alta precisédo para alvos pequenos e com caracteristicas
complexas. Ja os modelos de um estagio (one-stage), como o YOLO, destacam-se
por sua vantagem em velocidade, o que viabiliza o processamento rapido na deteccéo
de doencgas e pragas. A eficacia desses modelos para aplicagbes em cenérios do
mundo real e em tempo real € evidenciada pela integracdo em aplicativos para
plataformas moéveis. Ela atinge taxas de quadros por segundo (FPS) adequadas para

diagnosticos preliminares. A escolha entre uma arquitetura one-stage e two-stage

depende do equilibrio necessario entre precisdo, tempo de resposta e recursos
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computacionais disponiveis (LI et al., 2023).

A literatura recente também aponta para uma tendéncia de integracdo entre
eficiéncia e escalabilidade. Modelos como o EfficientDet alcangam bom desempenho
em cenarios de uso agricola com recursos limitados, enquanto o RetinaNet, com sua
funcdo de perda focal loss, tem mostrado robustez em datasets desbalanceados,
comuns no agro (TAN e LE, 2020; CAO, SUN e BAO, 2025). Essa adaptabilidade é
crucial para aplicagbes em ambientes reais, onde a coleta de dados enfrenta

variacfes de iluminacéo, oclusdes e angulos nao controlados.

Essas inovacdes confirmam a tendéncia de busca por detectores que combinem
alta precisdo com eficiéncia computacional, essenciais para ambientes
agroalimentares de alta variabilidade. Tais avancos oferecem base técnica para
compreendermos a evolucao posterior dos detectores YOLO e sua aplicabilidade no

contexto das pimentas.

2.5 Evolucao da Arquitetura YOLO

A arquitetura YOLO (You Only Look Once), proposta por Redmon et al. em 2016,
foi estruturada como um método de deteccdo de objetos em que a imagem € dividida
em uma grade SxS, e o modelo prevé simultaneamente as bounding boxes, que séo
retdngulos que delimitam a posi¢cdo dos objetos na cena, e as probabilidades de
classe em uma Unica avaliacdo da rede, e isto caracteriza um processo de deteccao
de etapa unica (REDMON et al., 2016). Em contraste com abordagens two-stage,
como o Faster R-CNN, o YOLO executa o processo em um unico passo; ele reduz o
tempo de inferéncia e possibilita 0 uso em sistemas com restricbes computacionais.
Desde sua formulacéo, a arquitetura YOLO passou por versdes sucessivas voltadas

ao aprimoramento da precisao e da eficiéncia.

O YOLOv1, apresentado em 2016, introduziu o paradigma da deteccdo em
tempo real, ainda com limitacdes em objetos pequenos (REDMON et al., 2016). J4 o
YOLOvV2 (YOLO9000), lancado em 2017, incorporou o uso de anchor boxes e a
capacidade de detectar milhares de categorias simultaneamente (REDMON e
FARHADI, 2017). Em 2018, foi langado o YOLOv3 que trouxe a backbone Darknet-
53 e que ampliou a profundidade da rede e a robustez em diferentes escalas
(REDMON e FARHADI, 2018).

Segundo Bochkovskiy et al. (2020), o YOLOV4 introduziu as estratégias bag of
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freebies e bag of specials, que otimizaram o desempenho sem aumento significativo

do custo computacional. No mesmo ano, a Ultralytics langou o YOLOV5, amplamente
adotado pela comunidade cientifica por sua facilidade de implementacdo em PyTorch
e ampla documentagdo. O YOLOVG6, langado em 2022 pela Meituan, foi voltado a
aplicacoes industriais, com otimizacdes para dispositivos de borda e maior velocidade

de inferéncia, e mantém precisdo competitiva (LI et al., 2022).

O YOLOv7 apresentou o0 médulo E-ELAN, que aprimorou a convergéncia e a
precisdo e consolidou-se como o detector mais rapido e preciso de sua geracao
(WANG et al. 2022). Publicado em 2023 pela Ultralytics, o YOLOv8 reformulou a
arquitetura com melhorias no head de deteccado, além de introduzir modelos mais

leves e integrados a fluxos de implantacdo em dispositivos méveis.

O YOLOvV9, em 2024, apresentou o conceito de Programmable Gradient
Information (PGI) e a espinha dorsal GELAN e alcangou melhor aproveitamento de
caracteristicas em diferentes escalas (WANG, YEH e LIAO, 2024). O YOLOv10, em
2024, propds um desenho livre de NMS com atribuicbes duais consistentes; obteve
maior eficiéncia energética e laténcias menores; é adequado a aplicacdes em edge
computing (WANG et al., 2024).

No setor agricola, Khan, Shen e Liu (2025) reforcam que arquiteturas YOLO sé&o
particularmente relevantes para deteccdo de pragas, frutos e doencas devido a
necessidade de diagndésticos rapidos e escalaveis. Em complementacéo,
Venkateswara e Padmanabhan (2025) mostraram que o YOLOv10 atinge taxas de
guadros por segundo elevadas e desempenho robusto em tarefas agroalimentares
complexas. Ele supera alternativas, como EfficientDet e RetinaNet, em cenarios de

campo.

Finalmente, em 2024, a Ultralytics langou o0 YOLOvV11, a versdo mais recente até
0 momento, que foca no equilibrio entre preciséo e velocidade. A atualizagdo melhora
a eficiéncia da arquitetura e a integracdo para implantagcdo em dispositivos moveis e
na nuvem. Segundo a empresa, o YOLOv11 aprimora o treinamento, o desempenho
em multiplos datasets e a escalabilidade para aplicagbes do mundo real
(ULTRALYTICS, 2024).

Cabe destacar que varias versdes do YOLO foram inicialmente divulgadas em
formato de preprint, como ocorre com o YOLOv4, YOLOv6, YOLOv7, YOLOVI e
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YOLOvV10. Embora esses trabalhos ndo tenham passado pelo processo tradicional de

revisdo por pares, sua relevancia cientifica esta consolidada por sua ampla ado¢éo
na comunidade académica, pelo elevado numero de citacbes e por serem
frequentemente analisados em revisdes sistematicas indexadas em Scopus e Web of
Science (KHAN, SHEN e LIU, 2025; DALAL e MITTAL, 2025). Dessa forma, o uso de
preprints neste referencial teorico reflete a propria dinamica de disseminagcdo da
pesquisa em visdo computacional, em que muitas contribuicdes fundamentais sao

divulgadas primeiramente em repositérios de acesso aberto.

A trajetdria do YOLO, do v1 ao v11, deve ser entendida como um exemplo de
avanco cientifico incremental e colaborativo, no qual cada verséo incorpora melhorias
arquiteturais que viabilizam novas aplicacbes. Esse movimento consolida a
arquitetura como uma das mais adequadas para cenarios agroalimentares
complexos, como a classificacdo automética de variedades de Capsicum spp. na
CEAGESP, onde robustez e processamento em tempo real sdo requisitos

fundamentais.

2.6 Pimentas do género Capsicum

O género Capsicum L. (Solanaceae) reune espécies de ampla relevancia
econdmica, gastrondmica e cientifica. E originario das Américas, com centro de
diversidade nos Andes e distribuicdo que se estende do sul dos Estados Unidos até
a Argentina e o Brasil (BARBOZA et al., 2022). Atualmente, sdo reconhecidas 43
espécies, das quais cinco foram domesticadas e alcancaram cultivo em escala global:
C. annuum, C. chinense, C. frutescens, C. baccatum e C. pubescens (BARBOZA et
al., 2022).

As pimentas sdo valorizadas ndo apenas por seu papel na alimentacdo, mas
também por atributos nutricionais e funcionais. Os frutos apresentam elevado teor de
compostos bioativos, entre os quais se destacam 0s capsaicindides, responsaveis
pela pungéncia caracteristica (BASITH et al., 2016). Dentre esses, a capsaicina e a
dihidrocapsaicina respondem por até 90% da ardéncia e atuam como principais
marcadores quimicos de intensidade sensorial (BASITH et al., 2016). A intensidade
da pungéncia € mensurada pela Escala de Scoville, proposta em 1912, que varia de
0 SHU (pimentdes doces) a 16 milhdes SHU (capsaicina pura) (SCOVILLE, 1912).

Além da utilizagdo como condimento e conservante natural, estudos recentes
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destacam o potencial farmacoldgico e industrial da capsaicina. Entre suas atividades

biologicas estdo efeitos analgésicos, anti-inflamatérios, antioxidantes e
anticancerigenos, com aplicacdes no tratamento de dores neuropaticas, distarbios
metabdlicos e inflamacdes crbnicas (BASITH et al.,, 2016). O uso ornamental de
algumas espécies e o emprego de derivados de pimentas em formulag6es industriais,
repelentes e produtos de defesa pessoal também ampliam o espectro de aplicacdes
(BARBOZA et al., 2022).

No contexto brasileiro, as pimentas apresentam relevancia tanto pelo consumo
interno, quanto pela presenca em cadeias de distribuicdo atacadista, como a
Companhia de Entrepostos e Armazéns Gerais de Sao Paulo (CEAGESP), onde o
grande volume de comercializacdo evidencia a importancia socioeconémica do
género (BARBOZA et al., 2022). Entretanto, o0s processos tradicionais de
classificacdo e padronizacdo, baseados em inspecédo visual, ainda constituem um
gargalo logistico, marcado pela subjetividade e pela suscetibilidade a erros (CRUZ-
DOMINGUEZ et al., 2021).

Pesquisas recentes indicam que ferramentas de visdo computacional e
inteligéncia artificial podem superar essas limitacdes e proporcionar maior preciséo e
escalabilidade na identificacdo varietal. Cruz-Dominguez et al. (2021) desenvolveram
um sistema baseado em redes neurais artificiais para classificagao de pimentas secas.
Obtiveram acurécia superior a 82% na diferenciacédo entre classes de qualidade, o
gue evidencia o potencial de tecnologias automatizadas para modernizar a cadeia

produtiva.

2.7 Desafios na Classificagcdo Automatica de Variedades de Capsicum

A classificacdo automatica de variedades de Capsicum spp. enfrenta desafios
especificos que decorrem tanto das caracteristicas intrinsecas da cultura, quanto das
limitacbes tecnolégicas ainda presentes nas abordagens atuais de visdo
computacional. Diferentemente de outras hortalicas ou frutos de maior variacéo
morfolégica, as pimentas apresentam elevado grau de similaridade visual entre
variedades, o que dificulta a distincdo por algoritmos de aprendizado profundo
(BARBOZA et al., 2022).

Outro desafio relevante refere-se as condi¢gbes ambientais sob as quais as

imagens séo capturadas. Em ambientes comerciais como a CEAGESP, a iluminacgéo
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artificial irregular, a presenca de sombras, reflexos e a sobreposi¢cao de frutos no

mesmo espaco reduzem a qualidade das imagens e prejudicam a generalizagao dos
modelos. Estudos recentes apontam que a variabilidade de iluminacdo e angulo de
captura pode impactar significativamente a precisdo de sistemas baseados em CNNs
e YOLO (KHAN, SHEN e LIU, 2025).

A disponibilidade e a qualidade de datasets também constituem barreira critica.
Muitos estudos em visdo computacional aplicada ao agro utilizam bases de dados
limitadas, com amostras desbalanceadas entre classes, o que compromete a
robustez e aumenta o risco de overfitting (DALAL e MITTAL, 2025). A escassez de
imagens rotuladas de forma padronizada para diferentes variedades de pimentas
reforca a necessidade de estratégias como data augmentation e transfer learning para

compensar a falta de dados em ambientes reais (PADILLA et al., 2021).

Outro aspecto a ser considerado é o custo computacional das arquiteturas mais
avancadas. Embora versdes recentes da familia YOLO tenham sido otimizadas para
uso em dispositivos moveis e de borda, sua aplicacdo em mercados atacadistas
demanda processamento rapido em tempo real, 0 que exige balancear a escolha de
modelos mais leves com a manutencdo da precisdo necessaria para a classificacao
varietal (VENKATESWARA e PADMANABHAN, 2025).

Além disso, a aceitacdo pratica da tecnologia depende da integracdo com
ferramentas acessiveis e compativeis com o cotidiano de produtores e comerciantes.
Sistemas complexos ou que exigem infraestrutura computacional avancada tendem
a enfrentar barreiras de adogcdo em contextos como a agricultura familiar e os
mercados regionais. Esse desafio € enfatizado por Porciello et al. (2022), que
apontam que a agricultura digital depende da capacidade dos sistemas de
compartilhar dados. Muitas regifes, entretanto, ainda apresentam limitacdes
estruturais basicas, como acesso instavel a eletricidade ou a redes de telefonia mével,
além da auséncia de arquiteturas adequadas para o compartilhamento de dados.
Nesse cenario, solugdes que conciliem precisédo técnica, simplicidade operacional e

baixo custo tornam-se essenciais para sua efetiva implementacgao.

Esses desafios evidenciam uma lacuna cientifica e pratica ainda pouco
explorada. Embora os modelos da familia YOLO tenham alcancado avancos

expressivos em tarefas de deteccdo de objetos em diferentes dominios, sua aplicacéo
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direcionada a classificagdo automatica de variedades de Capsicum spp. em
ambientes comerciais de alta complexidade, como a CEAGESP, permanece limitada.
A auséncia de datasets especificos, as dificuldades de generalizacdo em condicdes
reais de mercado e a escassez de solugbes integradas em plataformas acessiveis

reforcam a necessidade de estudos que aliem robustez técnica e aplicabilidade

pratica. Nesse contexto, a presente dissertagcdo busca preencher essa lacuna ao
avaliar o desempenho do YOLOV8 na identificacdo varietal de pimentas e ao propor
sua integracdo em um protoétipo de aplicativo mével voltado a usuérios do setor

agroalimentar.

A escolha do YOLOv8 como modelo base deve-se a um conjunto de fatores
técnicos e praticos. Em comparacdo com versdes anteriores da familia YOLO, o
YOLOV8 apresenta melhorias arquiteturais que resultam em maior precisao e maior
estabilidade de treinamento, o0 que, a0 mesmo tempo, mantém estrutura mais leve e
escalavel (ULTRALYTICS, 2023). Na familia, a versao “m” (medium) representa um
equilibrio entre desempenho e custo computacional: € mais robusta que as versoes
“n” (nano) e “s” (small), mas ainda viavel para ser executada em dispositivos moveis
e de borda, o que a torna especialmente adequada para o desenvolvimento do
protétipo de aplicativo proposto nesta pesquisa. Essa decisdo metodoldgica esta
alinhada ao objetivo de oferecer uma solucéo pratica e acessivel, que combine rigor

cientifico com aplicabilidade em ambientes comerciais como a CEAGESP.

E importante destacar que versdes posteriores da familia YOLO, como o
YOLOV9, YOLOv10 e YOLOv11, foram lancadas ao longo de 2024, quando esta
pesquisa ja estava em andamento. Embora representem avancos relevantes, essas
arquiteturas ainda careciam de valida¢cGes consolidadas em cenarios agricolas, o que
poderia comprometer a reprodutibilidade no cronograma da pesquisa. Dessa forma,
o0 YOLOvV8 foi selecionado como a alternativa mais estavel e viavel, pois garante

equilibrio entre inovacdao, eficiéncia computacional e aplicabilidade prética.
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CAPITULO Il

3 METODOLOGIA

3.1 Caracterizagdo da Pesquisa
De acordo com Gil (2018) e Yin (2015), esta pesquisa pode ser caracterizada

como:

Natureza aplicada, pois busca propor uma solucao pratica para o problema da
identificacédo de variedades de pimentas, por meio do uso de visdo computacional e

do desenvolvimento de um aplicativo.

Abordagem quantitativa, jA que envolve a mensuracdo do desempenho do
modelo YOLOvV8 por métricas objetivas recall e precisdo média (mAP); e qualitativa
em carater complementar, ao discutir a aplicabilidade pratica do protétipo do
aplicativo.

Objetivos exploratérios, ao investigar o potencial de aplicacdo da arquitetura
YOLOvV8 em um novo contexto agricola; explicativos, ao analisar os resultados

obtidos e suas limitacdes.

Procedimento técnico experimental, por empregar treinamento e testes de
rede neural em diferentes cenarios de dataset (com e sem data augmentation), e de
desenvolvimento tecnolégico, por englobar a elaboracdo de um prot6tipo de aplicativo

mével que integra o modelo treinado.

3.2 Protocolo de Reviséo de Literatura

A revisao bibliografica foi conduzida de forma sistematica para garantir uma
base teorica solida e atualizada. Foram consultadas as bases Scopus, Web of
Science e Google Scholar, com a priorizac&o de artigos publicados entre 2019 e 2024

Critérios de inclusdo: estudos aplicados de visdo computacional na

agricultura, uso de CNNs e evolucéo da familia YOLO.

Critérios de exclusao: trabalhos nao indexados em bases de alta

credibilidade ou com escopo divergente.
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Relevancia cientifica: a selecao priorizou artigos publicados em periédicos de
alto impacto, predominantemente classificados em Q1 e Q2 nas bases Scopus/Web
of Science, e nos estratos P1 a P3 do Qualis CAPES (2022), que correspondem aos

niveis mais elevados de qualidade da producéo cientifica nacional.

3.3 Design Science Research (DSR)

A presente pesquisa adota como orientacdo metodoldgica o Design Science
Research (DSR), abordagem que vem sendo discutida e atualizada nos ultimos anos,
especialmente no contexto de pesquisas aplicadas que buscam gerar
simultaneamente conhecimento cientifico e solugdes praticas (VOM BROCKE,
HEVNER e MAEDCHE, 2020). O DSR estrutura-se em fases iterativas que incluem a
identificacdo do problema, a definicdo dos objetivos, o design e desenvolvimento do
artefato, sua demonstragéo e avaliagdo, e a comunicacdo dos resultados, com a

garantia de rigor cientifico e relevancia pratica.

No campo das ciéncias aplicadas, a adocdo do DSR tem se mostrado
especialmente util para pesquisas que envolvem inovacdes tecnoldgicas e
complexidade de implementacdo. Prost (2021) destaca o potencial do DSR para
revitalizar praticas em ciéncias agricolas, ao alinhar metodologias cientificas com a
construcéo de artefatos capazes de enfrentar problemas reais. Da mesma forma,
Tuunanen et al. (2025) propdem que, em cenarios de alta complexidade, como
agueles que envolvem multiplos atores e recursos limitados, a aplicacdo do DSR deve

considerar niveis de design, para assegurar maior clareza e coeréncia entre etapas.

No contexto desta dissertacdo, as fases do DSR foram operacionalizadas da

seguinte forma:

3.3.1 Fase 1l -Identificacdo do problema e definicdo dos objetivos

O problema central foi definido a partir da dificuldade de classificacdo manual
de variedades de Capsicum spp. em ambientes de grande escala, como a CEAGESP,
0 que gera inconsisténcias, perdas e subjetividade no processo. Dessa lacuna
derivaram o0s objetivos da pesquisa: (i) desenvolver um dataset especifico de
pimentas, (ii) treinar e avaliar o modelo YOLOv8 em cenarios distintos e (iii) propor

um prototipo de aplicativo movel para aplicacao préatica.

32



3.3.2 Fase 2 - Anélise de requisitos

Nesta Nesta fase, foram definidos os requisitos técnicos, funcionais e
cientificos necessarios ao desenvolvimento do artefato. Do ponto de vista técnico e
cientifico, estabeleceu-se a necessidade de um dataset com diversidade morfolégica
adequada, a selecdo de um modelo de deteccdo de objetos que apresentasse
equilibrio entre acuracia e viabilidade de uso em dispositivos moveis. Foi adotado o
YOLOVS e a definicdo das métricas de avaliacdo, o que contempla Precisédo, Recall,
MAP50 e mAP95.

Além desses aspectos, foram definidos os requisitos funcionais que orientam o
fluxo operacional do protétipo. Conceitualmente, o sistema devera seguir 0 seguinte

Processo:

o Interface do usuério: permitir que o usuario capture uma imagem diretamente

pela camera do dispositivo ou carregue uma foto ja existente.

e Processamento: a imagem devera ser enviada ao modelo YOLOv8 hospedado
em servidor préprio e acessado por meio de uma APl REST.

« Retorno dos resultados: o sistema devera exibir a variedade identificada,

juntamente com informacdes adicionais pertinentes.

o Chatbot de apoio: o prototipo devera incluir um modulo conversacional para
fornecer informages complementares sobre a pimenta identificada, tais como
nivel de pungéncia, caracteristicas botanicas, formas de consumo culinario e
recomendacdes de armazenamento, fato que amplia a utilidade do sistema no

contexto agroalimentar.

3.3.3 Fase 3 - Design e desenvolvimento do artefato

Nesta fase foram conduzidas as etapas de coleta de dados (secédo 3.4),
preparacdo do dataset (secdo 3.5), aplicacdo de técnicas de data augmentation
(secéo 3.6), configuragdo computacional e procedimentos de treinamento (sec¢oes 3.7
e 3.8). Essas atividades resultaram no desenvolvimento do modelo YOLOVS treinado

em dois cenarios distintos, com e sem data augmentation.

3.3.4 Fase 4 — Demonstracao
A demonstracédo do artefato ocorreu em duas etapas complementares. A

primeira consistiu na aplicagdo experimental do modelo YOLOvVS8 treinado sobre o
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conjunto de teste, o0 que permite avaliar seu desempenho em condi¢des controladas.
A segunda etapa correspondeu a implementacéo e a integracdo do modelo em um
protétipo funcional de aplicativo moével, desenvolvido a partir dos mockups conceituais
apresentados na Secao 3.10. Nessa fase, o protétipo foi integrado ao modelo por
meio de uma API REST, fato que incorporou funcionalidades de captura de imagem,
classificacdo automatica e chatbot informativo. Concluida essa integracdo, o
aplicativo foi disponibilizado a equipe técnica da CEAGESP para validacao pratica em

condic¢@es reais de uso no ambiente comercial da unidade.

3.3.5 Fase 5 - Avaliacéo

A avaliacao inicial concentrou-se nas métricas de desempenho do modelo
YOLOvV8, amplamente reconhecidas na literatura, incluisive em Precisdo, Recall,
MAP50 e mAP95. Em etapa posteror, prevista como continuidade da pesquisa, sera
realizada a avaliacdo pratica do protétipo movel em ambiente real, com participacao
da equipe parceira da CEAGESP.

3.3.6 Fase 6 — Comunicacao

Os resultados ja obtidos foram comunicados por meio de artigo cientifico
publicado na revista Applied Sciences (2025) e estdo sistematizados nesta
dissertacdo. Ap6s a implementacdo da versdo funcional, o aplicativo foi
disponibilizado a equipe técnica da CEAGESP, acompanhada de um formulario de
avaliacdo que buscou registrar a percepcdo dos usuarios sobre aspectos
operacionais, clareza da interface e adequacédo das funcionalidades as rotinas do
entreposto. Essa acéo teve como objetivo comunicar o artefato ao publico diretamente
envolvido na cadeia comercial de pimentas e coletar contribuicbes que possam

orientar ajustes futuros.

A combinacdo entre a documentacdo apresentada nesta dissertacdo e o
processo de validacdo junto aos profissionais da CEAGESP permite que o artefato
seja apresentado de forma transparente e contextualizada, que ofereca subsidios

para sua analise, seu uso e seus possiveis aprimoramentos em trabalhos posteriores.

Essa organizacdo metodoldgica contibui para o alinhamento entre problema,
objetivos, procedimentos e resultados; ela refor¢ca a replicabilidade da pesquisa e
atende as recomendac0tes de Gil (2018) quanto a clareza no detalhamento de etapas
metodoldgicas.
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3.4 Coletade dados

A coleta de dados foi realizada em duas frentes:

Coleta primaria: A coleta de dados foi realizada nha CEAGESP, principal centro
de comercializagdo hortifrutigranjeira do pais. O objetivo foi registrar imagens
representativas das oito variedades de Capsicum selecionadas, capturando a
variabilidade visual observada em condicdes reais de mercado.

As fotografias foram obtidas diretamente nas bancas. Utilizou-se a iluminacéo
natural do ambiente e preservaram-se 0s elementos caracteristicos do cenario
comercial, como fundos variados, embalagens, caixas, sombras e diferentes
disposicdes dos frutos. Essa estratégia buscou refletir o contexto genuino de uso do
sistema, o que permitiu que o modelo fosse treinado com imagens compativeis com
aguelas posteriormente encontradas no ambiente de aplicacao.

Foram utilizados trés dispositivos para a captura das imagens, com a garantia
de resolucéo, textura e profundidade de campo:

« Samsung Galaxy Tab A8, com camera traseira de 8 MP;

* Nikon Coolpix L120, no modo automatico, com sensor CCD de 14,1 MP e
lente com zoom 6ptico de 21x;

* iPhone 11, equipado com sistema de cameras duplas de 12 MP e

capacidade de gravacao em 4K.

Coleta secundaria: Foi feita manualmente por busca on-line em bases
abertas; o Google Imagens (com filtro de licencas Creative Commons) como fonte
principal e complementada por coletas no Pixabay. Selecionaram-se arquivos em alta
resolucao (= 300 dpi), nos formatos JPEG (.jpg) ou PNG (.png), com diversidade de

angulos, iluminacéao e enquadramentos para ampliar a variabilidade do conjunto.

Foram selecionadas 1.476 imagens iniciais, distribuidas entre as variedades
Biquinho, Bode, Chili, Fidalga, Habanero, Jalapefio, Scotch Bonnet e Cambuci,

representadas no mosaico de exemplos apresentado na Figura 2.
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Figura 2 - Exemplo de imagens do dataset por classe (8 variedades de pimentas)
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e <= X

Habanero Jalapefo Scotch Bonnet

Fdalgs

Fonte: Elaboracéo propria (2025).

3.5 Preparacédo do dataset

A rotulagem das imagens coletadas na etapa anterior foi realizada
manualmente na plataforma Roboflow. Utilizou-se a ferramenta retangular para
delimitar cada fruto com uma bounding box aderente as bordas visiveis e, em seguida,
associou-se a classe correspondente a partir da lista previamente definida. Em cenas
com multiplos frutos, cada instancia recebeu uma caixa e um rétulo préprios; em
oclusdes parciais, anotou-se a por¢do visivel quando suficiente para identificacéao,
conforme Figura 3. Imagens com desfoque severo, exposi¢cdo inadequada ou
ambiguidade de classe foram excluidas. Esse procedimento seguiu as orientagdes
operacionais do Roboflow para anotagdo supervisionada com bounding boxes
(ROBOFLOW, 2023).
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Figura 3 - Exemplo de anotacdo com bounding boxes no Roboflow

No Tags Appled

Fonte: Elaborag&o propria (2025).

A padronizagdo do tamanho foi executada no proprio Roboflow, com a
normalizacdo de todas as imagens para 640 x 640 pixels, em extensdo JPG,
conforme recomendacdo do YOLOvV8 para assegurar uniformidade e eficiéncia
computacional (Jocher et al., 2022).

Na etapa de pré-processamento foi exportado o conjunto de imagens anotadas
no perfil YOLOv8. O formato de ré6tulo adotado foi o nativo do YOLO: para cada
imagem, um arquivo .txt homoénimo € criado; cada linha descreve um objeto no padrao
class x_center y center width height, com as quatro grandezas geométricas
normalizadas em [0,1] em relagéo a largura e a altura da imagem. A lista de classes
e seus nomes é definida no arquivo data.yaml, que também referencia os caminhos
das particdes train/ val/ test (ULTRALYTICS, 2023; ROBOFLOW, 2023).

ApoOs a anotacdo, o dataset inicial, composto por 1.476 imagens, foi dividido
em 84% para treinamento (1.245 imagens), 14% para validacdo (201 imagens) e 2%
para teste (30 imagens). Priorizou-se maximizar exemplos de treino e manter, em
validacao e teste, amostras visualmente diversas (iluminagéo, angulos e morfologia).
A estratégia adotada encontra respaldo nos estudos de Frizzi et al. (2021), os quais
mostram que, em cenarios caracterizados pela escassez de dados, a priorizagdo do
volume do conjunto de treinamento, aliada a técnicas de data augmentation, atua
eficazmente na mitigacdo do overfitting e pressupfe a manutencdo da
representatividade nos subconjuntos de validacéo e teste. Apesar da adeséo a este

principio, ressalta-se que a dimenséo reduzida do conjunto de teste atual imp&e
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limitacbes a avaliacdo definitiva quanto a capacidade de generalizacdo do modelo.

3.6 Técnicas de data augmentation

Com o objetivo de aumentar a diversidade do dataset e melhorar a capacidade
de generalizacdo do modelo YOLOVS8, foram aplicadas técnicas de data augmentation
diretamente na plataforma Roboflow, com a inclusdo da rotacdo aleatdria e do
desfoque gaussiano. Essas transformacdes resultaram a geracdo de um novo dataset
expandido, o que totalizou 3.964 imagens. A Figura 4 apresenta exemplos dessas

transformacdes.

Figura 4 - Exemplo de técnicas de data augmentation aplicadas ao dataset

Fonte: Elaboragéo propria (2025).

O uso de data augmentation € amplamente reconhecido na literatura como
estratégia eficaz para reduzir o risco de overfitting e aumentar a robustez de modelos
de visdo computacional (YILMAZ e KUTBAY, 2024). O overfitting ocorre quando um
modelo apresenta desempenho elevado no conjunto de treinamento, mas perde
capacidade de generalizacdo em novos dados, por ter memorizado padroes
especificos em vez de aprender caracteristicas representativas (ZHANG et al., 2021).

No presente estudo, foram utilizados os seguintes parametros de transformacao:

Rotacédo aleatéria: variacdo entre —30° e +30°, o que permite simular diferentes

angulos de captura das pimentas;

Desfoque gaussiano (gaussian blur): o desfoque gaussiano foi aplicado com
kernel 3x3, com producdo de um efeito leve, suficiente para simular pequenas
variacbes de foco que ocorrem em condi¢des reais de captura de imagens, sem

comprometer a legibilidade das caracteristicas visuais das variedades de pimentas.



Recorte (cropping): avaliado inicialmente, foi descartado, pois ocasionava a

perda de caracteristicas importantes em variedades com frutos menores.

Essas técnicas ampliaram o dataset inicial, com a garantia de maior diversidade
visual e de uma base mais robusta para o treinamento do modelo. A Figura 5 sintetiza,

de forma gréfica, o fluxo de criagdo do dataset.

Figura 5 - Fluxograma de preparacdo do dataset e seu particionamento
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Fonte: Elaborag&o propria (2025).
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3.7 Configuracdo Computacional

O treinamento foi realizado no Google Colab Pro, servico hospedado de
notebooks Jupyter que permite executar Python no navegador com acesso a
GPUs/TPUs e instalacao de bibliotecas por sesséo, o que favorece reprodutibilidade,
baixo custo e rapida disponibilizacdo de hardware acelerado (GPU) para deep
learning (GOOGLE, 2025a; GOOGLE, 2025b).

A opcao pelo Colab Pro se justifica por (i) acesso sob demanda a GPUs NVIDIA
(com a inclusédo de T4, L4, V100 e A100, conforme plano), com cobranca previsivel e
documentacdo publica de precos; (i) ambiente gerenciado, com CUDA e drivers
compativeis; (iii) facilidade de compartiihamento do notebook para auditoria do
experimento (GOOGLE, 2025c).

No presente estudo, as execucdes utilizaram GPU NVIDIA Tesla T4 (16 GB
GDDR®6), adequada a tarefas de treinamento de CNNs gracas aos Tensor Cores e ao
suporte a calculo multi-precisdo (FP32/FP16/INT8), que aumentam a eficiéncia em
training/inference (NVIDIA, 2019; NVIDIA, 2024).

O runtime foi Python 3.10 com PyTorch 2.0 e Ultralytics YOLOVS8, instalados no
préprio Colab via pip, com atencdo aos requisitos minimos do projeto (Python = 3.8;
PyTorch = 1.8; GPU CUDA-compativel para aceleracao) e ao guia de instalacdo/uso
do Ultralytics (ULTRALYTICS, 2023a; ULTRALYTICS, 2023b; PYTORCH, 2025). As

execucodes iniciavam com verificacdo de acesso a GPU e seed para reprodutibilidade.

3.8 Procedimentos de treinamento
O treinamento do modelo YOLOVS foi conduzido em dois cenarios distintos, com
e sem data augmentation, com o objetivo de comparar o impacto da aplicacdo dessa

técnica sobre o desempenho do modelo e sobre o custo computacional.

Utilizou-se o YOLOvV8m (deteccao one-stage) com imgsz=640, batch size = 16
e learning rate inicial = 0,01, mantendo otimizador/agendador padréo do framework.
O treinamento foi invocado pela API do Ultralytics via model.train (...), conforme
documentacéo oficial (ULTRALYTICS, 2023a; ULTRALYTICS, 2023e). No Cenério 1
(sem data augmentation), foram utilizadas 200 épocas de treinamento, batch size de
16 e learning rate de 0,01. Ja no Cenario 2 (com data augmentation), o modelo foi
treinado por 170 épocas, com a manutengcdo do mesmo batch size (16) e learning rate
(0,01).
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size

O parametro batch size refere-se ao numero de amostras processadas
simultaneamente antes da atualizacdo dos pesos, enquanto o learning rate controla
a taxa de atualizacdo dos parametros do modelo durante o processo de
retropropagacdo. Ambos o0s parametros exercem influéncia direta sobre a
estabilidade e a eficiéncia do treinamento (GOODFELLOW, BENGIO e COURVILLE,
2016; ZHANG et al., 2021). Os parametros adotados em cada cenario estao

resumidos na Tabela 1.

Tabela 1 - Parametros de treinamento do YOLOv8 com e sem data augmentation

Cenarios Epocas Batch size Le?;?;ng Tfon:ario

Sem data 16 1 hO4mi
augmentation 200 00 Shoamin

Com datg 170 16 0,01 6h34min
augmentation

Fonte: Elaboragéo propria (2025).
Para tornar explicitos os procedimentos empregados no treinamento, a Figura

6 sintetiza o fluxo adotado.
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Figura 6 - Fluxograma de treinamento do modelo YOLO8m no Google Colab Pro
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3.9 Meétricas de Avaliacao

A mensuracao do desempenho do modelo YOLOvVS foi realizada no ambiente
Google Colab Pro, com a utilizacdo dos médulos de validac&o da biblioteca Ultralytics,

extraidos diretamente dos relatérios de execucéo gerados pelo framework.

Esses resultados sdo apresentados pela ferramenta sob duas formas
complementares: (i) registros tabulares (logs), que detalham os valores de preciséao e
recall ao final de cada época de treinamento; (ii) artefatos graficos, com incluséo de
curvas de aprendizado (F1-score, Precision-Recall) e matrizes de confuséo, salvos
automaticamente ao término do processo. Com base nesses dados brutos, foi
possivel compilar as métricas consagradas na literatura de visdo computacional

(PADILLA et al., 2021) para avaliar a qualidade das deteccdes.

A Figura 7 ilustra visualmente os conceitos de Precisdo, Revocacao e os limiares
de Intersec¢éo sobre Uni&o (loU) adotados nesta pesquisa. Nela, os retangulos verdes
representam as caixas delimitadoras reais (anotadas manualmente); os retangulos

vermelhos indicam as predi¢cdes realizadas pelo modelo.

Figura 7- Representacdo das métricas de avaliagdo (Precisdo, Recall, mAP50 e mAP95)

Fonte: Adaptado de Padilla et al. (2021).

Com base na representacao visual da Figura 7 e nas definicbes estabelecidas

por Padilla et al. (2021), as métricas séo definidas como:

Precisé@o (Precision): ilustrada no primeiro quadro da Figura 7, esta métrica
avalia a confiabilidade das detec¢gbes positivas. Ela mensura a proporcdo de
predi¢cdes corretas (Verdadeiros Positivos) em relagéo ao total de caixas geradas pelo
modelo. Em termos praticos, uma alta precisado indica que o modelo minimiza a

ocorréncia de falsos positivos, ou seja, "ndo inventa” pimentas onde elas nao existem.

Revocacédo (Recall): representada no segundo quadro, a revocacao (ou

sensibilidade) quantifica a capacidade do modelo em encontrar todas as instancias
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dos objetos de interesse presentes na imagem. Ela é calculada pela razao entre os
acertos do modelo e o numero total de objetos reais (ground truth). Um alto valor de

recall indica que o sistema é eficaz em nao omitir pimentas (minimiza falsos negativos)

MAP50 (Média da Precisdao com loU 2 50%): conforme observado no terceiro
quadro da Figura 7, o loU (Intersecéo por Unido) calcula a area de intersec¢ao dividida
pela area de unido entre a caixa predita e a real. O mAP50 representa a média da
precisdo para todas as classes; considera como "acerto” apenas as predicdes que
apresentam uma sobreposicao de area superior a 50% com a anotacao original. Este
€ o limiar padréo para avaliagdes de modelos de identificagéo.

MAP95 (Média da Precisdo com loU 50-95%): llustrada no quarto quadro, esta
€ uma métrica de rigor elevado. Ela calcula a média da precisédo na variacdo do limiar
de loU de 0,50 a 0,95, com incrementos de 0,05. Visualmente, isso exige que a caixa
vermelha (predicdo) esteja quase perfeitamente alinhada a caixa verde (real). Esta
métrica é fundamental para avaliar a precisdo da localizacdo geométrica do objeto.
Ela penaliza deteccbes que, embora classifiquem corretamente a variedade, néao

delimitam perfeitamente as bordas do fruto.

3.10 Desenvolvimento do protoétipo do aplicativo App Pimentas

Esta secao descreve, em nivel operacional, os procedimentos adotados para
desenvolvimento e disponibilizacédo do prot6tipo do aplicativo web App Pimentas. Ao
longo do texto, o termo “aplicativo” € utilizado para se referir a esse prototipo funcional,

gue constitui o artefato da pesquisa em Design Science.

Buscou-se registrar o percurso técnico seguido na pesquisa de forma que ele
possa ser compreendido e, em principio, repetido por outros interessados, com foco
na transparéncia e na reprodutibilidade do artefato. No ambito da Design Science
Research (DSR), a explicitacdo do processo de construcdo, do ambiente técnico e
das decisdes de projeto integra o rigor da pesquisa (HEVNER et al., 2004; HEVNER,
2007; HEVNER, 2024).

O aplicativo, em si, tem como objetivo principal identificar 8 variedades de
pimentas a partir de imagens e disponibilizar informa¢des associadas ao uso culinério
e a ardéncia. A metodologia, por sua vez, busca descrever este processo desde 0 uso

do modelo YOLOV8 exportado em ONNX até a interface web progressiva e a
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implantagcdo em nuvem (MAXWELL; BESTER; RAMEZAN, 2022).

3.10.1 Arquitetura geral e tentativa inicial com Kodular

Inicialmente, foi investigada a possibilidade de disponibilizar o modelo em um
aplicativo Android nativo criado no Kodular. Kodular € uma plataforma visual no-code
para desenvolvimento de aplicativos Android, baseada em componentes gréaficos e
blocos de programacgédo, o que permite criar e compilar pacotes de instalacédo
(arquivos APK, Android Package) sem necessidade de escrever cédigo textual
(KODULAR, 2025).

Durante os testes em dispositivos Android, observou-se, porém, que as
chamadas de camera realizadas via havegador embutido (WebView) ndo acionavam
corretamente o pedido de permissao do sistema operacional, o que impedia a captura
de imagem no App, apesar de a mesma pagina funcionar normalmente no navegador
Chrome do mesmo aparelho. Essa limitacao é compativel com relatos técnicos sobre
restricbes de acesso a camera e uso de getUserMedia em alguns contextos de
WebView, que podem exigir configuracbes adicionais ou ndo oferecer suporte
completo a APl (ROUMELIOTIS; TSELIKAS, 2022).

Diante dessa evidéncia empirica, optou-se por nao prosseguir com o0
empacotamento via Kodular, mas adotar uma arquitetura em que 0 usuario acessa
diretamente a aplicacdo pelo navegador do dispositivo, sem intermediacdo de
WebViews. O registro dessa tentativa e de sua limitacdo técnica contribui para

explicitar o caminho que levou a solucéo adotada.

Na configuracdo consolidada, o protétipo passou a ser organizado em trés

camadas:

Backend de inferéncia em Python, com a execugdo do modelo YOLOv8m
exportado para o formato ONNX;

Interface web em formato Progressive Web App (PWA), responsavel pela

interacdo com o usuario, captura/envio de imagens e exibicéo dos resultados;

Infraestrutura de versionamento e implantacdo, baseada em repositério
GitHub e servico em nuvem do tipo Platform as a Service (PaaS), neste caso a

plataforma Render.
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3.10.2 Backend de inferéncia em Python, FastAPl e ONNX

O backend, isto é, a parte da aplicacado responsavel pelo processamento no
servidor e pela disponibilizacdo das rotas HTTP, foi desenvolvido em Python, com a
utilizacdo do framework FastAPI. Este € um framework moderno para criacdo de APIs
REST em Python, que, na sua vez, se apoia em anotac¢oes de tipo (type hints) para
validagdo automética de dados. Ele oferece boa performance em servidores
assincronos, além de gerar documentacdo automética em formato OpenAPI
(TIANGOLO, 2018).

O modelo de deteccdo utilizado é o YOLOv8m, na configuracdo padrdo de
arquitetura disponibilizada pela Ultralytics, previamente treinado e ajustado neste
estudo para a deteccdo das classes de pimentas consideradas (Sec¢ao 3.x), e
posteriormente exportado para o formato Open Neural Network Exchange (ONNX).

O ONNX é um padrdo aberto para representacdo de modelos de aprendizado
de maquina, concebido para permitir interoperabilidade entre diferentes frameworks
e facilitar a execu¢cdo em ambientes variados, como servidores, dispositivos de borda
e aceleradores de hardware (BAI et al., 2019; MICROSOFT, 2024). A execuc¢éo do
modelo em formato ONNX é realizada por meio da biblioteca Ultralytics YOLO, em
conjunto com o ONNX Runtime, runtime de alto desempenho para inferéncia de
modelos ONNX, mantido pela Microsoft (MICROSOFT, 2024).

No arquivo main.py sdo definidos:

e 0 caminho local do modelo (MODEL_PATH) e a URL remota (MODEL_URL), da

gual o arquivo best.onnx € baixado na primeira execucao;

« a fungéo ensure_model_file(), responsavel por verificar a existéncia do arquivo

local e efetuar o download quando necessario;

e uma rotina de carregamento em segundo plano (background), que € executada
automaticamente ao iniciar o servidor, que baixa e carrega 0 modelo ONNX em

memaria, com o registro de variaveis globais de estado (READY e LOAD_ERR).

Dessa forma, ao utilizar o mesmo cddigo-fonte e a mesma URL do arquivo

best.onnx, configurada em MODEL_URL, diferentes instalacfes do sistema passam
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a usar exatamente o mesmo modelo de deteccdo, o que estd em linha com
recomendacdes de boas préaticas para reprodutibilidade e replicabilidade em
experimentos de deep learning (MAXWELL; BESTER; RAMEZAN, 2022).

As principais rotas expostas pelo backend sao

e« POST /predict: recebe um arquivo de imagem (UploadFile); converte-o para o
formato de cores RGB (vermelho, verde e azul); reduz a imagem de modo que o
maior lado tenha no maximo 1.024 pixels; executa a inferéncia com o modelo
YOLOv8m. A resposta da APl é um objeto JSON que contém, para cada
deteccdo, a classe prevista, 0 escore de confianca e as coordenadas da caixa

delimitadora (bounding box);

e GET /ui: entrega o documento HTML que compde a interface de identificacao de

pimentas;

o GET l/info: entrega a interface do tipo chat que consome o arquivo estatico
pepper_info.json para exibir informacdes detalhadas sobre cada variedade.

As rotas foram organizadas de modo a permitir que a API seja acessada e
testada de forma direta (por exemplo, por meio de ferramentas de inspecao de
requisicbes HTTP). Isto facilita a verificacdo do seu funcionamento em diferentes
ambientes, em linha com recomendacBes de reprodutibilidade em workflows de
aprendizado de maquina (MAXWELL; BESTER; RAMEZAN, 2022).

3.10.3 Interface web e Progressive Web App (PWA)

A interface do Aplicativo Pimentas foi desenvolvida como um Progressive Web
App (PWA). Nessa abordagem, a aplicacdo é escrita com tecnologias web (HTML,
CSS e JavaScript), mas passa a se comportar de forma semelhante a um aplicativo
nativo. Pode ser instalada na tela inicial, pode funcionar com conectividade limitada.
Isso é viabilizado pelo uso de um service worker, script que roda em segundo plano
no navegador e controla o cache da aplicacdo, em conjunto com um mecanismo de
armazenamento em cache e uma estrutura basica de interface (app shell)
(ROUMELIOTIS; TSELIKAS, 2022).

No projeto, a PWA é composta por

e um arquivo de manifesto (manifest.webmanifest), configurado com o nome
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do aplicativo, icones, cores de tema e URL de inicio;

e um service worker (sw.js), responsavel por interceptar requisicbes e

gerenciar o cache dos recursos essenciais;

e arquivos HTML e JavaScript que controlam a interacdo no navegador:
exibem os botdes para tirar foto com a camera ou selecionar uma imagem
da galeria; os arquivos obtém essa imagem, reduzem sua resolucédo no
préprio navegador (com o uso de um elemento canvas) e a empacotam em
um formulario (FormData) para envia-la, por meio de uma requisicdo HTTP
POST, ao endpoint /predict. Em seguida, o cédigo JavaScript recebe a
resposta da APl em formato JSON; interpreta os campos retornados
(classe prevista, escore de confianca e, quando disponivel, a URL da
imagem anotada) e atualiza a interface; mostra 0 nome da pimenta

identificada e a respectiva imagem ao usuario.

O service worker utiliza uma estratégia de cache do tipo app shell, na qual os
arquivos basicos da interface sdo guardados localmente no navegador. No momento
em que o service worker é instalado (evento install), ele pré-carrega um conjunto de
caminhos essenciais, como /ui e /info, o arquivo de manifesto, os icones e o
pepper_info.json. Em seguida, os armazena em um cache identificado pelo nome
CACHE_NAME.

Quando o usuario navega pelo aplicativo, cada solicitacdo de recurso faz com
gue o navegador dispare o evento fetch. Nessa etapa, o codigo do service worker
verifica o tipo de requisicao e decide se o recurso sera obtido diretamente da rede ou
atendido a partir do contetido ja armazenado em cache, com a aplicagdo de regras
distintas para as rotas de interface e para o endpoint de predicao (/predict).

As regras implementadas no service worker para o atendimento das requisigoes

e« Chamadas POST para /predict: sdo sempre encaminhadas diretamente a rede,
sem uso de cache, de modo que cada requisicéo de predicéo utilize o resultado

atual do modelo, sem reutilizar respostas anteriores.

« Requisi¢cdes para as rotas de interface (/ui, /info): adotam uma estratégia em

gue o navegador tenta obter o recurso primeiro na rede (network first); se a
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conexao falhar, o service worker retorna a versao armazenada em cache, o que

permite que a interface continue acessivel mesmo com instabilidade de conexao.

e Requisicdes de recursos estaticos (icones, arquivos JSON, CSS): utilizam
uma estratégia em que o service worker procura primeiro no cache (cache first);
se 0 recurso nao estiver disponivel localmente, a busca é feita na rede (fallback),

e o resultado é entdo armazenado em cache para usos futuros.

Essa forma de uso do service worker e do cache segue a ideia de PWA descrita
na literatura, em que aplicagées web s&o configuradas para funcionar em diferentes
dispositivos e em situacdes de conexao instavel, e elas se mantém baseadas em
tecnologias web (ROUMELIOTIS; TSELIKAS, 2022).

Na tela principal da PWA, o usuario encontra
e botéo para captura de imagem pela camera do dispositivo;
e botdo para envio de uma imagem da galeria;

e 4rea para visualizacdo da imagem enviada e, quando habilitado, da

imagem anotada com bounding boxes;

e texto com a classe de pimenta identificada e o respectivo nivel de

confiancga.

Na Figura 8, apresenta-se a tela inicial do App Pimentas, com os botdes de
escolha de imagem e abertura da camera, bem como a visualizacdo da imagem

original e do resultado da detec¢éo de pimentas.
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Figura 8 - Tela inicial de identificacdo de pimentas do App Pimentas

# Identificacdo de Pimentas

Escolher imagem Abrir cdmera

Identificar Mais informagdes

A imagem € comprimida para -1024px antes do envio

para acelerar.

Original Resultado

Detectado: Chilli-Pepper - 86% + Caixas: 4

= ® 4

Fonte: Elaboragéo propria (2025).

Na tela de informacdes complementares, acessada apdés 0 processo de
identificacdo, o protétipo abre automaticamente um chat associado a variedade de
pimenta reconhecida pelo modelo na etapa anterior. Quando apenas uma classe é
detectada, o chat ja é iniciado diretamente com essa pimenta; caso mais de uma
classe seja identificada na mesma imagem, o usuario pode escolher, na prépria
interface, qual variedade deseja explorar primeiro. A partir desse ponto, 0 usuario
pode navegar entre diferentes tipos de pimenta por meio de opgdes no proprio chat,
com consulta aos topicos, como definicdo, ardéncia, usos culinarios, conservacao e
curiosidades, sem necessidade de voltar a tela de identificagéo. A Figura 9 apresenta
a interface do chat de informacdes para a pimenta Habanero-Pepper.
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Figura 9 - Tela de chat de informagdes do App Pimentas (com exemplo para a pimenta Habanero-

3.10.4 Versionamento no GitHub e implantacédo na Render

Para organizar o cddigo e apoiar a replicacdo do protétipo, foi utilizado um
repositério na plataforma GitHub, baseada no sistema de controle de verséo
distribuido Git. Repositérios Git tém sido amplamente adotados em ciéncia de dados
e aprendizado de maquina justamente por permitirem rastrear mudancas, associar
resultados a commits especificos e facilitar a colaboragcdo (MAXWELL; BESTER,;
RAMEZAN, 2022).

Pepper)

Chat: Habanero-Pepper

Use os botdes ou digite o
nome/sindnimo.

< *Habanero-Pepper* —
escolha uma opgao:

8 Oquee

& Ardéncia (SHU)

&) Usos/Receitas

&) Conservagdo

L) Substituigdes

&) Origem

&4 Curiosidades/Extras
&3 Trocar pimenta

. Vocé também pode digitar o
*nome/sindnimo* da pimenta (ex..

jalapenofjalapeno, chilli,
biquinho...).

Fresca: 5-7 dias; Conserva:

meses; Pode congelar em
pedagos.

Fonte: Elaborag&o propria (2025).

No repositorio estéo incluidos

0 arquivo principal da API (main.py);



e 0s arquivos de configuracdo do ambiente (requirements.txt e runtime.txt);

e 0s arquivos estaticos da PWA (manifest.webmanifest, sw.js, icones, HTML

e JavasScript);

e 0 arquivo pepper_info.json, com as informacdes textuais sobre as

pimentas.

O aplicativo foi implantado na plataforma Render, que € um servico de Platform
as a Service (PaaS) para hospedagem de aplicacbes web. Plataformas PaaS
abstraem parte da complexidade de configuracdo de servidores (sistema operacional,
servidor de aplicacao, bibliotecas) e permitem reproduzir ambientes de execucgéo a
partir de configuracdes declarativas (MICROSOFT, 2024).

Na configuracdo adotada, a plataforma Render esta vinculada ao repositorio do
projeto no GitHub. Sempre que ha uma nova atualizacdo no branch configurado, a
Render cria um ambiente com Python 3.10, instala as dependéncias listadas em
requirements.txt e inicia o servidor FastAPI com um comando do tipo uvicorn
main:app. Variaveis de ambiente, como MODEL_URL e HF_TOKEN, séo registradas
diretamente no painel da Render, 0 que evita que esses valores aparecam nos
arquivos do repositério. Essa combinac¢@o entre codigo versionado e uso de um
servico PaaS contribui para organizar o processo de implantacdo e oferece um
caminho relativamente simples para que outro pesquisador configure um ambiente de

execucao equivalente.

3.10.5 Procedimento de replicacdo do prototipo

1. Obter o codigo-fonte

e Acessar o0 repositorio do projeto no GitHub (conforme Apéndice B), referente
ao commit utilizado nesta dissertacédo, e clonar o repositorio ou baixar o pacote

de codigo.
2. Configurar o ambiente Python
e Instalar Python 3.10.;

e Criar um ambiente virtual e instalar as dependéncias com pip install -r

requirements.txt.

52



53
3. Configurar o modelo ONNX

e Definir a variavel de ambiente MODEL_URL apontando para o arquivo

best.onnx (modelo treinado em YOLOv8m);

e Opcionalmente, configurar token de acesso para o repositério do modelo, se

necessario.
4. Executar o backend localmente
e Iniciar o servidor com uvicorn main:app --host 0.0.0.0 --port 8000;
e verificar, em http://localhost:8000/, o status de carregamento do modelo.
5. Acessar a interface PWA
e Abrir http://localhost:8000/ui em um navegador;
e Instalar o app na tela inicial, caso o nhavegador ofereca essa opcao;
e Testar 0 envio de imagens e o retorno dos resultados de inferéncia.
6. Validar a tela de informacdes complementares

e Acessar http://localhost:8000/info e verificar o carregamento do contetdo de

pepper_info.json;

e Conferir se as informacdes exibidas correspondem as classes de pimentas

utilizadas no modelo.

Embora o App Pimentas tenha sido registrado como programa de computador,
o coédigo-fonte utilizado nesta pesquisa foi disponibilizado em repositério Git na
plataforma GitHub, conforme indicado no Apéndice B. Essa opc¢éo permite que outros
pesquisadores acessem a implementacao do protétipo, com a inclusdo de arquivos
de cadigo, configuracbes de ambiente e o commit especifico associado a esta
dissertacao, o que facilita a reconstru¢do do ambiente descrito nos passos anteriores

e a realizacao de estudos posteriores a partir do mesmo ponto de partida.

A descricao detalhada desses passos, associada a disponibilizacdo do codigo e
a indicacdo da versdo especifica do modelo ONNX, vai ao encontro de
recomendacdes recentes sobre transparéncia e reprodutibilidade em DSR e em



workflows de aprendizado de maquina (HEVNER; VOM BROCKE, 2023; MAXWELL,;
BESTER; RAMEZAN, 2022).

Adicionalmente, o prototipo descrito nesta secao foi objeto de pedido de registro
como programa de computador junto ao Instituto Nacional da Propriedade Industrial
(INPI), sob o titulo App Pimentas, processo n° 512025006150-1, com peticdo
eletronica n° 870250108484, protocolada em 26 nov. 2025. Esse registro tem a
finalidade de resguardar a autoria e os direitos relativos ao software e ndo impede a
disponibilizacdo do cddigo-fonte em repositério Git para fins de pesquisa, conforme
indicado no Anexo B.

Concluida a etapa de implementacdo, o protétipo sera disponibilizado para

validacdo pratica junto a equipe parceira da CEAGESP, a fim de validar sua

aplicabilidade em ambiente real, coletar feedback de usuérios e orientar melhorias

futuras.

3.11 Procedimento de validacdo do protdtipo

Para uma avaliacao inicial do protétipo no contexto de uso, foi realizado contato
com a equipe do Centro de Qualidade Hortigranjeira da CEAGESP. Foi enviado um
e-mail ao chefe da se¢édo, com o link de acesso ao aplicativo App Pimentas e o link
para um questionario eletrénico de avaliacdo elaborado na plataforma Microsoft
Forms (ver Apéndice A).

O instrumento utilizado foi um questionario estruturado, em formato digital,
composto por uma breve apresentacdo dos objetivos do estudo e instrucbes de
preenchimento, seguido de uma escala de concordancia de cinco pontos (1 = discordo
totalmente; 5 = concordo totalmente). O questionario foi organizado em quatro blocos
tematicos: (i) Usabilidade e experiéncia do usuério, com itens sobre facilidade de
aprendizagem, navegacgéao entre telas e uso da camera nas condi¢des de trabalho
(galpao/box); (i) Desempenho e precisdo da inteligéncia artificial, com abordagem
de acerto na identificacdo do tipo de pimenta, na capacidade de classificar lotes
mistos ou parcialmente cobertos e no alinhamento com a classificagdo padréo
utilizada na CEAGESP; (iii) Desempenho operacional e confianga, com questdes
relativas a laténcia entre a captura da foto e a apresentacdo do resultado e ao grau
de confianca do usuério na classificacdo para fins de decisdo (por exemplo,

destinagao ou preco); (iv) Utilidade percebida e intengédo de uso, que trata da
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estabilidade do aplicativo, da utilidade da informacéo de classificacéo para a atividade
profissional, da percepcéo de agregacédo de valor a conferéncia ou negociacdo e da
intencao de uso futuro do aplicativo.

O questionario foi configurado para ndo coletar automaticamente dados
pessoais dos respondentes (como nome ou endereco de e-mail) e ndo incluiu
guestdes especificas de caracterizacéo de perfil (por exemplo, idade, escolaridade ou
funcdo detalhada). O foco do instrumento esteve na avaliagdo da usabilidade, do
desempenho percebido do modelo e da utilidade pratica do protétipo no contexto de
trabalho.

Até a data de fechamento desta dissertacdo, o questionario ndo havia recebido
respostas validas por parte da equipe do Centro de Qualidade Hortigranjeira da
CEAGESP. Dessa forma, nédo foram produzidos resultados quantitativos de validacao
em campo, e a avaliacdo sistematica com USUarios externos permanece como etapa
pendente. Ainda assim, a descri¢cdo do instrumento e do procedimento de convite é
mantida nesta secdo como registro metodologico, e é retomada no Capitulo V como
limitacdo do estudo e recomendacao para trabalhos futuros.
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CAPITULO IV

4 RESULTADOS E DISCUSSOES

4.1 Dataset

Este item atende ao objetivo especifico A, que consistiu em construir e
organizar um dataset de imagens de variedades de Capsicum spp.. Foram coletadas
1.476 imagens na CEAGESP e em repositorios publicos, posteriormente anotadas e
expandidas por técnicas de data augmentation, o que resultou 3.964 imagens. O
dataset foi organizado em particdes para treinamento, validacdo e teste, e esta
disponivel para download no link: https://figshare.com/s/22c9578a30a4c5409bc7, fato
gue contribui para a replicabilidade da pesquisa. Esse resultado reforca a relevancia
do estudo ao fornecer uma base inédita dedicada especificamente a classificacdo

automatica de pimentas.

A criacao do dataset preenche uma lacuna identificada na literatura (DALAL e
MITTAL, 2025; KHAN, SHEN e LIU, 2025), em que a auséncia de bases de dados
especificas para pimentas limitava experimentos reprodutiveis. Além disso, o
resultado conecta-se ao ODS 9 (Industria, Inovacéao e Infraestrutura) ao disponibilizar

infraestrutura cientifica aberta que pode ser reutilizada por outros pesquisadores.

A construcao deste dataset ndo apenas atendeu ao objetivo especifico A, mas
também foi o alicerce para o desenvolvimento do objetivo especifico B. O artigo
cientifico apresentado na sec¢éo seguinte s péde ser realizado gracas a existéncia
desse repositorio de imagens, que viabilizou o treinamento, a avaliacdo e a validacao

experimental do modelo YOLOvVS.
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4.2 Artigo Cientifico - Identificagdo Automatizada de Variedades de Pimentas com

YOLOv8

Este item responde ao objetivo especifico B, que consistiu em avaliar o
desempenho da arquitetura YOLOvV8 em cenarios com e sem data augmentation.
Apresenta o artigo cientifico intitulado "YOLOv8 for Automated Pepper Variety
Identification: Improving Accuracy with Data Augmentation”. O trabalho foi

desenvolvido com o objetivo de aplicar e avaliar o desempenho da arquitetura de rede



neural convolucional YOLOvV8 na identificacdo automatizada de variedades de

pimentas no contexto pés-colheita.

A pesquisa valida o uso do modelo YOLOvV8 para aprimorar o controle de
gualidade no setor agroalimentar e, por isto, aborda a necessidade de identificagao
de oito variedades de pimentas: Biquinho, Bode, Chili, Fidalga, Habanero, Jalapefio,
Scotch Bonnet e Cambuci. Para isso, foi construido e utilizado um dataset com 1.476
imagens anotadas, que foi se expandido por meio de técnicas de aumento de dados
para otimizar a performance do modelo. Conforme detalhado no artigo, o treinamento
com o dataset aumentado resultou melhorias significativas em indicadores-chave de

desempenho, como box precision, recall e mean average precision (mAP).

Esse resultado indica que, apesar de os desafios de variabilidade morfol6gica
e iluminacdo em ambientes comerciais serem significativos (KHAN, SHEN e LIU,
2025), técnicas de augmentation podem ampliar a capacidade de generalizacdo do
modelo e mitigar riscos de overfitting. A contribuicdo cientifica € reforcada pelo
reconhecimento em publicacdo revisada por pares, enquanto a contribuicdo préatica
esta em oferecer um modelo mais robusto para ambientes reais. Em termos de
impacto, conecta-se ao ODS 2 (Fome Zero e Agricultura Sustentavel), ao apoiar

processos de classificacdo mais confiaveis que podem reduzir perdas pés-colheita.

O artigo foi aceito e publicado na revista Applied Sciences (v. 15, €7024, 2025.)
em 22 de junho de 2025. A integra do artigo publicado esta disponivel no ANEXO A.

Os resultados obtidos apresentados no artigo indicam a aplicabilidade da
arquitetura YOLOV8 para a identificacdo de pimentas. A métrica geral de mAP50
alcancou 0.694 com o uso de data augmentation. Este valor deve ser analisado no
contexto da complexidade da tarefa, que envolve a classificagdo de grao fino (fine-
grained classification), um desafio em visdo computacional em que as classes
apresentam elevada similaridade visual e a distingdo depende de caracteristicas sutis
(WEl et al., 2022), entre oito variedades com elevada similaridade visual. Diante deste
cenario, um desempenho de 0.694 sugere que o modelo foi capaz de aprender
caracteristicas distintivas e estabeleceu um ponto de partida para a validacdo da

tecnologia.
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A andlise por classe indica diferencas relevantes de desempenho entre as
variedades. A Cambuci-Pepper, cuja morfologia € mais singular em relacdo as
demais, apresentou mAP50 de 0,827. Essa diferenca € compativel com resultados de
tarefas de classificacdo de imagens em que classes visualmente mais distintas
tendem a ser melhor discriminadas. Ja as categorias com alta semelhanca visual
concentram as principais confusbes de classe, como relatado em problemas de
reconhecimento de caracteres manuscritos e de espécies vegetais com grande
similaridade morfolégica (SAYEED et al., 2021; RANI et al., 2025).

Em contraste, no caso da Fidalga-Pepper, observou-se reducdo da BoxP de
0,768 para 0,652 ap0s a aplicacdo do data augmentation. Uma hipétese plausivel é
gue, em variedades muito semelhantes entre si, determinadas transformacdes de
aumento de dados possam enfatizar padrdes visuais comuns e atenuar pistas
morfoldgicas distintivas, o que aumenta a confuséo entre classes. Estudos recentes
destacam que o efeito do data augmentation € dependente do contexto: embora
frequentemente melhore o desempenho, em alguns cenéarios pode nao produzir
ganhos ou pode degradar métricas especificas. Isto dependera da combinacdo de
técnicas utilizada e da arquitetura do modelo (ALOMAR; AYSEL; CAI, 2023; OMONIYI
et al., 2025).

Esses achados sdo consistentes com evidéncias de que a combinagdo entre
alta similaridade visual entre classes e estratégias de data augmentation ndo
adaptadas ao dominio pode aumentar confus6es em tarefas de classificacdo fina
(ALOMAR; AYSEL; CAI, 2023; RANI et al., 2025).

A pesquisa contribui para a literatura ao apresentar um dataset publico para a
classificacdo de Capsicum spp., uma lacuna apontada por Khan, Shen e Liu (2025) e
Dalal e Mittal (2025). A disponibilizacdo dos dados alinha-se ao ODS 9 (Industria,
Inovacéo e Infraestrutura), ao fomentar a replicabilidade e o avanco de novas

pesquisas.

A validacdo do YOLOvV8 como ferramenta aplicavel reforga o potencial da visdo
computacional na Agricultura 4.0, conforme discutido por Javaid et al. (2022) e
Lezoche et al. (2020). A automacéo da classificacdo em centrais, como a CEAGESP,
pode mitigar gargalos logisticos e erros de inspecao manual e impactar positivamente

0 ODS 12 (Consumo e Producao Responsaveis).
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As limitacfes da pesquisa devem ser reconhecidas. O conjunto de teste, embora
diverso, € numericamente reduzido, uma vez que a estratégia priorizou um maior
volume de dados para o treinamento do modelo. Adicionalmente, mesmo que a coleta
de imagens tenha ocorrido em um ambiente comercial real (CEAGESP), a
metodologia buscou amostras com maior "uniformidade de iluminagdo e
enquadramento”. Essa abordagem, necessaria para garantir a qualidade do dataset
inicial, pode néo ter capturado toda a extensdo de condi¢cdes adversas encontradas
no ambiente do entreposto, como sombras intensas, oclusdes parciais ou baixa
luminosidade. Portanto, a generalizacdo do modelo para condicdes de captura

totalmente irrestritas ainda representa um campo para validacéo futura.

Apesar dessas limitacdes, os resultados alcancados indicam o potencial do
YOLOvV8 como solucdo viavel para a classificacdo de pimentas. Essa validacéo
experimental constitui a base para o terceiro objetivo especifico da pesquisa, que
consiste no desenvolvimento de um protétipo de aplicativo mével. A transicdo do
ambiente de testes para uma solucdo pratica busca ampliar a utilidade do estudo.
Com isto, disponibiliza-se o0 modelo em uma ferramenta acessivel para produtores,
comerciantes e consumidores na CEAGESP, com funcionalidades adicionais de

apoio por meio de um chatbot informativo.

4.3 Protétipo do aplicativo App Pimentas

Este item apresenta os resultados relacionados ao objetivo especifico C, que
consistiu em desenvolver um protétipo de aplicativo integrado ao modelo YOLOv8m
para identificacdo automética de variedades de pimentas comercializadas na
CEAGESP. O protétipo foi implementado como aplicacdo web progressiva (PWA),
conforme descrito no Capitulo 3, e implantado em ambiente de producdo na

plataforma Render, a partir do repositdrio versionado do projeto.

Do ponto de vista funcional, o protétipo permite que o usuario capture uma
imagem pela camera do dispositivo ou selecione uma foto previamente armazenada
na galeria, envie essa imagem ao backend de inferéncia e visualize, na propria
interface, a variedade de pimenta identificada e o nivel de confianca associado a
predicdo. Quando a opgdo esta habilitada, a aplicagdo também exibe a imagem

anotada com as caixas delimitadoras (bounding boxes) sobre os frutos detectados.

Na tela principal do aplicativo, o usuario encontra (i) botdo para captura de
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imagem pela camera do dispositivo; (ii) botdo para envio de uma imagem da galeria;
(iif) area para visualizacdo da imagem enviada e, quando habilitado, da imagem
anotada com bounding boxes; (iv) texto com a classe de pimenta identificada e o
respectivo nivel de confianca. Essa tela inicial do prototipo ja foi apresentada na
Figura 8 (Secao 3.10), que ilustra o fluxo de identificacdo de pimentas em execugéo

em dispositivo movel.

Depois de realizada a predicdo, o protétipo abre automaticamente a tela de
informacgdes complementares, em formato de chat, vinculada a variedade de pimenta
identificada. Quando h& apenas uma classe detectada, o chat é carregado
diretamente com essa pimenta. Quando o modelo retorna mais de uma classe, a
interface oferece ao usuario a possibilidade de escolher com qual variedade deseja
iniciar a consulta. A gualquer momento, o usuario pode alternar entre diferentes tipos
de pimentas no proprio chat, no acesso a informacdes sobre definicdo, ardéncia, usos
culindrios e outras caracteristicas, a partir do conteudo estruturado no arquivo
pepper_info.json. Esse comportamento da interface pode ser observado na Figura 9
(Secédo 3.10), que mostra um exemplo de didlogo com o aplicativo para uma

variedade especifica de pimenta.

Durante o desenvolvimento, foram realizados testes funcionais internos,
conduzidos pela autora, com o objetivo de verificar o fluxo de uso do protétipo em
condi¢cBes controladas: captura ou selecdo de imagens, envio ao endpoint /predict,
retorno dos resultados em formato JSON e atualizacdo da interface com a variedade
identificada. Esses testes permitiram corrigir problemas de layout e de tratamento de
erros (por exemplo, envio de arquivos em formato incorreto ou auséncia de conexao
no momento da requisi¢cao), bem como verificar a integracao entre a PWA e o backend

de inferéncia.

Em sintese, ao final da etapa de desenvolvimento, o protétipo do App Pimentas
encontra-se funcional e acessivel via navegador, a partir de URL publica, com suporte
a captura de imagens em dispositivos moveis, execucdo do modelo YOLOv8m em
formato ONNX no servidor e apresentacdao dos resultados em interface voltada ao
uso pratico em ambientes de comercializagdo de hortigranjeiros, e a CEAGESP tem

0 estudo de caso inicial.
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4.4 Tentativa de validagcdo do protétipo com a equipe da CEAGESP

Esta secédo descreve a etapa de validacao do protétipo App Pimentas planejada
no Centro de Qualidade Hortigranjeira da CEAGESP e a situacdo efetivamente
observada até o fechamento desta dissertacdo. Em linha com o procedimento
metodoldgico apresentado na Sec¢do 3.11, previu-se a aplicacdo de um questionario
estruturado a profissionais da CEAGESP, de modo a captar percepcbes sobre
usabilidade, desempenho percebido do modelo e utilidade pratica do protétipo no

contexto de trabalho.

Entretanto, apesar do envio do convite e da disponibilizagdo do aplicativo em
ambiente de producdo, ndo foram registradas respostas ao questionario durante o
periodo de coleta. Assim, ndo ha resultados empiricos suficientes para uma analise
guantitativa ou estatistica da aceitacéo do prototipo pela equipe da CEAGESP. Nesta
secao, sdo apresentados o procedimento de coleta adotado e as implicacdes dessa
auséncia de retorno para a interpretacao dos resultados da pesquisa.

4.4.1 Procedimento de coleta

A validacdo do protétipo no contexto de uso foi planejada por meio de um
guestionario eletrénico elaborado na plataforma Microsoft Forms, conforme detalhado
na Secao 3.11 e apresentado integralmente no Apéndice A. O link de acesso ao App
Pimentas, hospedado na plataforma Render, e o link do questionério foram
encaminhados por e-mail ao chefe da secdo de qualidade hortigranjeira da

CEAGESP, com solicitacdo de divulgacédo aos demais membros da equipe técnica.

O instrumento manteve a estrutura originalmente proposta: uma breve
apresentacdo dos objetivos do estudo, seguida por itens organizados em blocos
tematicos (usabilidade, desempenho percebido da inteligéncia artificial, desempenho
operacional e confianca, utilidade percebida e intencéo de uso), todos avaliados em
escala de concordancia de cinco pontos (1 = discordo totalmente a 5 = concordo

totalmente), além de um campo aberto opcional para comentarios.

O formulario permaneceu disponivel para respostas de 19/11/2025 a
02/12/2025, data de fechamento desta dissertacdo. Nesse intervalo, ndo foram
registradas respostas validas, o que impossibilitou a consolidacdo de resultados

numericos ou a andlise comparativa entre respondentes.
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4.4.2 Retorno obtido e implicagcdes pra analise

Diante da auséncia de respostas ao questionario, ndo foi possivel realizar a
analise descritiva planejada na Secdo 3.11. Nao ha, portanto, distribuicdo de
frequéncias por item, médias por bloco tematico ou sintese quantitativa das
percepcoes da equipe da CEAGESP sobre o prototipo.

Essa situacao restringe a avaliacdo do App Pimentas sob a perspectiva dos
usuarios finais previstos, de modo que a discussdo desta dissertacdo, no que se

refere a etapa de validacdo, permanece concentrada em dois niveis:

o testes funcionais internos, realizados pela autora, que verificaram o fluxo basico
de uso (captura ou selecdo de imagens, envio ao endpoint /predict, retorno do

JSON de predicéo e atualizagao da interface);

« andlise conceitual da adequacgéo do prototipo ao contexto de uso, com base na
literatura sobre Agricultura 4.0, visdo computacional e servicos digitais em

agricultura.

Em outras palavras, o estudo conseguiu avancar na validacdo técnica
(desempenho do modelo YOLOv8m e funcionamento da arquitetura PWA/Backend),
mas nao obteve evidéncias empiricas suficientes para uma validacdo organizacional
do protétipo com a equipe da CEAGESP. Essa distingdo ajuda a situar o alcance dos
resultados: o protétipo mostrou-se funcional e tecnicamente viavel nas condi¢cfes
avaliadas, mas sua aceitacdo e sua utilidade pratica no ambiente do entreposto
permanecem como questdes em aberto para investigacdes futuras.

4.4.3 Sintese da etapa de validacao

Em sintese, a etapa de validacdo planejada com a equipe do Centro de
Qualidade Hortigranjeira da CEAGESP nao se concretizou em termos de respostas
ao questionario, o que impede a apresentacdo de resultados estatisticos ou de

conclusdes baseadas em evidéncias coletadas em campo.

Ainda assim, o registro do procedimento adotado, o convite formal por e-mail, a
disponibilizacao de link publico para o prototipo e uso de questionario estruturado em

plataforma digital podem ser Uteis por pelo menos trés motivos:

1. Transparéncia metodoldgica: explicita-se que houve uma tentativa de validagcao

com usuarios reais, bem como suas limitagdes préticas, o que evita que se atribua
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ao protétipo um grau de validacao que ele ainda nao possui;

2. Delimitacdo do escopo dos resultados: reforca-se que, nesta dissertacdo, o
foco recai sobre o desempenho do modelo YOLOv8m, a construcédo do dataset e
a implementacdo do protétipo em arquitetura PWA, enquanto a avaliacdo

sistematica por usuarios permanece pendente;

3. Agenda para pesquisas futuras: o questionario e o procedimento descritos
podem ser reaproveitados em ciclos posteriores de Design Science Research,
seja com a propria equipe da CEAGESP, seja com outros atores da cadeia de
valor das pimentas, o que permite aprofundar a analise sobre usabilidade,

utilidade percebida e impacto do protétipo na rotina de trabalho.

Essa leitura é retomada no Capitulo V, em que a auséncia de respostas ao

qguestionério é explicitada como limitacdo do estudo e como oportunidade para

pesquisas subsequentes.
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CAPITULO V

5 CONCLUSOES

5.1 Consideracdes gerais sobre a pesquisa

Este trabalho partiu da seguinte questéo orientadora: Como aplicar e avaliar a
arquitetura YOLOVS8 na identificagdo automatica de variedades de Capsicum spp. em
ambientes comerciais de alta complexidade e integra-la a um protétipo de aplicativo
movel voltado ao uso pratico? A investigacao foi estruturada sob a perspectiva da
Design Science Research (DSR), com o entendimento do protétipo dataset, modelo
e aplicacdo web, como artefato por meio do qual se constréi e se organiza

conhecimento de projeto (design knowledge) sobre o problema estudado.

As etapas de construcdo do dataset, o treinamento do modelo YOLOv8m, a
avaliacdo dos resultados e o desenvolvimento do protétipo App Pimentas em
arquitetura PWA permitiram explorar questdes técnicas (desempenho, generalizacdo
e impactos do data augmentation). Em linha com a perspectiva da DSR, aplicada as
ciéncias agrarias, o artefato néo é tratado como solugao “final”, mas como um arranjo
experimental que ajuda a explicitar condi¢des, limitacdes e possibilidades de uso de

visdo computacional na cadeia

De forma geral, os resultados indicaram que a combinacdo entre um modelo
YOLOv8m treinado em um dataset especifico de pimentas e uma arquitetura web,
baseada em PWA, constitui uma alternativa tecnicamente viavel para apoiar a
identificacdo automatica de variedades de Capsicum spp., desde que se reconhecam
os limites de generalizacdo do modelo e o carater exploratorio do protétipo. O trabalho
também reforcou que, em tarefas de classificacao fina (fine-grained), a construcao do
dataset, o desenho das estratégias de aumento de dados e a definicdo do contexto

de uso tém impacto direto nas métricas obtidas e na utilidade pratica do sistema.

5.2 Contribui¢cdes da pesquisa
5.2.1 Contribuic@es cientificas

No plano cientifico, a pesquisa se soma aos estudos que exploram o uso de
visdo computacional na agricultura e na cadeia de alimentos, em especial aqueles
gue tratam de deteccéo e classificacdo de plantas, frutos ou doencas em imagens
capturadas em cenario de campo ou de pds-colheita.
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A andlise dos resultados do modelo contribui para a literatura de classificacao
de gréo fino ao ilustrar, em um caso aplicado, como diferencas de morfologia entre
classes favorecem ou dificultam a discriminacdo por redes profundas. Contribuem
ainda ao ilustrar como certas combinagbes de data augmentation podem, em
contextos muito sensiveis, ndo produzir ganhos homogéneos entre as classes. Esses
achados dialogam com revisfes sobre analise de imagens de alta granularidade, que
apontam a importancia de considerar cuidadosamente quais transformacfes sao

compativeis com as pistas visuais que distinguem cada grupo de interesse.

Além disso, o estudo operacionaliza, em um dominio concreto, proposi¢cées
recentes sobre o papel da DSR na renovac¢do das ciéncias agrarias ao articular a
construcéo de um artefato tecnolégico com a compreensdo do contexto produtivo e
institucional em que ele pode ser utilizado. Essa articulacdo é particularmente
relevante em um cenario em que a Agricultura 4.0 e os servicos digitais em agricultura
sdo vistos como promissores, mas ainda convivem com lacunas de infraestrutura, de
dados e de desenho de solug¢des ajustadas as rotinas dos usuarios finais.

5.2.2 Contribuicdes metodoldgicas

Do ponto de vista metodoldgico, uma preocupacdo central deste trabalho foi
documentar, de forma transparente e detalhada, o processo de constru¢cdo do
prototipo App Pimentas, bem como as condi¢cdes necessarias para sua reconstrugao
em outros ambientes técnicos. Essa postura dialoga com a perspectiva da Design
Science Research (DSR), que enfatiza a necessidade de tornar explicitos o ciclo de
construcéo e de avaliacao do artefato, o contexto de aplicacéo e os artefatos gerados,
como condicdo para o rigor e para a utilidade cientifica da pesquisa (HEVNER et al.,
2004; HEVNER, 2007).

No caso especifico do App Pimentas, essa preocupacdo se materializou na
organizacédo de uma cadeia de implementacao que explicita os principais elementos
do ambiente: (i) um repositorio Git que contém o cédigo-fonte do backend em FastAPI
e da interface PWA; (i) um arquivo requirements.txt com as dependéncias
necessarias ao ambiente Python; (iii) arquivos de configuracdo da interface web
(HTML, JavaScript, manifesto e service worker); (iv) o uso de variaveis de ambiente
para parametrizar o caminho do modelo best.onnx e outras configuracdes sensiveis.
A literatura em inteligéncia artificial e aprendizado de maquina tem apontado, de

forma recorrente, que a auséncia de informacdo sobre cddigo, dados, ambiente e
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procedimentos de execugdo é um dos principais obstaculos a reprodutibilidade de
estudos empiricos (GUNDERSEN e KJENSMO, 2018; PINEAU et al., 2021; DESAI;
ABDELHAMID; PADALKAR, 2025).

Ao explicitar o uso de repositorio Git, arquivo requirements.txt, variaveis de
ambiente, logs de carregamento do modelo e procedimentos passo a passo para
reconstrucdo do ambiente, o trabalho responde a recomendacdes da literatura de
ciéncia de dados que vém destacando a importancia do versionamento e da
documentacédo de pipelines para a reprodutibilidade de experimentos de aprendizado
de maquina (GUNDERSEN e KJIENSMO, 2018; PINEAU et al., 2021). Nesse sentido,
a metodologia proposta pode servir como referéncia para outros pesquisadores que
desejem implantar protétipos semelhantes, seja em agricultura, seja em outros

dominios que demandem classificacdo de imagens em tempo quase real.

A opcdo por uma arquitetura PWA também tem dimensdo metodoldgica. Ao
empregar apenas tecnologias padrdo da web (HTML, CSS e JavaScript),
complementadas por service worker e mecanismos de cache, o protétipo péde ser
utilizado em diferentes dispositivos sem exigir a instalacdo de um aplicativo nativo.
Sendo assim, o fato reduz barreiras de entrada e se mostra condizente com
descricbes de PWAs como aplicacdes web instalaveis, baseadas em tecnologias
padréo, capazes de oferecer uso em multiplas plataformas e funcionamento em modo
offline ou com conectividade instavel (CHERUKURI, 2024; MUAWWAL, 2024).

Além disso, a metodologia descreve, em passos operacionais, 0s procedimentos
necessarios para reconstruir o protétipo em outro ambiente: obtencao do cédigo-fonte
(via repositério Git ou pacote associado a um commit especifico), instalagdo do
Python e das dependéncias por meio do requirements.txt, configuracdo da variavel
de ambiente MODEL_URL, o que aponta para o0 arquivo best.onnx, para a
inicializacdo do servidor FastAPI e para 0 acesso as rotas principais (/ui, /predict e
/info). A descricdo desses passos busca atender as recomendagdes de que estudos
em aprendizado de maquina explicitem ndo apenas os resultados, mas também o
pipeline técnico que os produz, o que facilita a repeticéo e a extensao de experimentos
por outros grupos de pesquisa (GUNDERSEN e KJENSMO, 2018; PINEAU et al.,
2021; DESAI; ABDELHAMID; PADALKAR, 2025).

5.2.3 Contribuicfes praticas

No plano pratico, a pesquisa resultou um protétipo funcional que ilustra como
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modelos de detecc¢ao de objetos podem ser integrados ao cotidiano de um entreposto
hortigranjeiro. Embora ainda néo se trate de uma solugcéo pronta para adocdo em
escala, o App Pimentas fornece um exemplo concreto de como organizar, em uma
mesma interface, a identificacdo automatica de variedades de pimentas e a
disponibilizacdo de informacdes sobre ardéncia, uso culinario, conservacdo e

curiosidades, em formato de chat acessivel de dispositivos moveis.

Essa contribuicdo pratica tem potencial para apoiar ndo apenas a equipe técnica
da CEAGESP, mas também estudantes, pesquisadores e outros profissionais
interessados em testar, adaptar ou expandir o artefato para outros produtos agricolas
ou outros contextos de comercializacdo. Ao longo do processo, foram identificados
pontos de atencdo que podem orientar iniciativas futuras, como a necessidade de
calibrar o fluxo de interacéo as condicfes reais de uso (tempo disponivel, qualidade
da rede, familiaridade com tecnologias digitais) e de considerar desde cedo
estratégias para manutencao e atualizacao continua do modelo a medida que outras

variedades de pimentas sejam implementadas.

5.3 LimitacOes e implicacdes
Como em todo estudo empirico, os resultados apresentados devem ser
interpretados a luz de limitac6es especificas.

A primeira diz respeito ao préprio dataset. As imagens utilizadas foram coletadas
em condic¢des e contextos limitados, com foco em oito variedades de Capsicum spp.
comercializadas em um Unico entreposto. Isso significa que o modelo foi exposto a
um conjunto relativamente restrito de variacdes de iluminac¢éo, disposicdo dos frutos,
tipos de embalagem e combinacdes de produtos. Em cenarios de aplicacédo
diferentes, outros mercados, outras regides, outros arranjos de bancas, é plausivel
gue o desempenho se altere, o que reforca a necessidade de processos continuos de
atualizacdo do dataset e de re-treinamento do modelo quando se pretende ampliar o

escopo de uso.

Uma segunda limitacdo esta associada as estratégias de data augmentation.
Embora tenham sido importantes para aumentar a diversidade aparente das imagens
de treinamento, os resultados mostraram que, em classes visualmente muito
proximas, algumas transformacdes podem refor¢car semelhancas em vez de destacar

diferencas e produzir efeitos distintos entre as classes. Isso sugere que abordagens
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de aumento de dados em classificacao de gréo fino talvez exijam configuracdes mais
cuidadosas, possivelmente adaptadas a cada grupo de interesse, em linha com
analises recentes sobre efeitos contextuais do data augmentation em redes

profundas.

Do ponto de vista arquitetural, a op¢cao por realizar a inferéncia no servidor, e
nao diretamente no dispositivo, implica dependéncia de conexao de rede para uso do
protétipo. Embora a arquitetura PWA permita algum nivel de funcionamento em
condicBes de conectividade instavel (cache de interface, mensagens de erro mais
controladas), a identificacdo de pimentas em si ndo ocorre offline. Isso pode limitar o
uso em ambientes com cobertura precaria ou em situagdes em que a rede local do

mercado esteja sobrecarregada.

Por fim, a avaliacdo com usuérios ndo pbde ser efetivamente realizada. Essa
auséncia de retorno configura uma limitacdo importante do estudo e indica que a
etapa de validacdo com usuarios externos ainda precisa ser conduzida em ciclos
futuros de pesquisa, seja com a CEAGESP, seja com outros contextos de
comercializacao de hortigranjeiros.

Em consequéncia, o objetivo especifico C (“desenvolver e validar um protétipo
de aplicativo mével que integre o modelo YOLOvVS8”), foi atendido de forma parcial: o
protétipo foi desenvolvido e colocado em funcionamento em ambiente web (PWA),
com integragdo ao modelo YOLOv8m em formato ONNX, mas a validagdo com
usuarios finais permaneceu restrita a testes funcionais internos, sem a etapa de

avaliacao estruturada no contexto da CEAGESP.

Essas limitacbes ndo invalidam os achados, mas delimitam o alcance das
conclusdes. Elas reforcam a importancia de tratar o prototipo como ponto de partida
para estudos subsequentes e de integrar, em ciclos de DSR, avalia¢des técnicas e
organizacionais mais amplas, como sugerem discussdes recentes sobre a adocéo de

servicos digitais em agricultura.

Uma limitacé@o adicional refere-se ao modulo de chat do prototipo. Nesta etapa,
o chat foi implementado de forma propositalmente simples, a partir de um conjunto
fixo de respostas estruturadas em arquivo JSON e regras de navegacgao entre topicos,
sem utilizacdo de modelos de linguagem de grande porte (large language models,
LLMs) nem de técnicas de geracao aumentada por recuperacao (retrieval-augmented
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generation, RAG).

Modelos de linguagem combinados com mecanismos de recuperacédo em bases
externas tém sido investigados como alternativa promissora para tarefas de pergunta-
resposta intensivas em conhecimento. Eles permitem recuperar documentos
relevantes de um repositorio especializado e utiliz4-los como contexto para a geracao

de respostas mais especificas e fundamentadas (LEWIS et al., 2020).

No contexto deste trabalho, abordagens baseadas em LLM e RAG poderiam,
em estudos futuros, ser exploradas para oferecer explicacées mais ricas e atualizadas
sobre caracteristicas agronémicas, nutricionais ou de mercado das pimentas, a partir
de um repositério ampliado de fontes. Ao mesmo tempo, a adocdo desse tipo de
solucéo exigiria lidar com questdes de custo computacional, curadoria e atualizacao
de conteudo, controle de alucinag6es e governanca das fontes utilizadas, o que
justifica a opcédo inicial por um chat deterministico e controlado nesta fase da

pesquisa.

5.4 Recomendacg®es para trabalhos futuros

No eixo de dados e modelagem, uma prioridade € a ampliacdo do dataset para
incluir mais variedades de pimentas, diferentes estagios de maturacdo, multiplos
mercados e condi¢des sazonais diversas. A incorporacao de imagens capturadas por
diferentes dispositivos e em diferentes horarios pode contribuir para tornar o modelo
mais resistente a variacdes de iluminagdo e enquadramento. Estudos posteriores
também podem investigar estratégias de data augmentation especificas para
classificacao fina e avaliar, de forma sistematica, quais transformacdes preservam ou

reforcam pistas morfolégicas relevantes para a distingdo entre classes semelhantes.

Outra possibilidade €é a exploragdo de arquiteturas alternativas ou
complementares ao YOLOv8m, como versbes mais recentes da familia YOLO ou
abordagens multimodais que integrem informacgdes visuais e textuais (por exemplo,
rétulos, anotagbes de caixas, descricdo do lote). A comparagdo entre diferentes
modelos poderia ser conduzida com base em métricas padronizadas e em cenarios

de uso alinhados a literatura de avaliagcdo de detectores em agricultura.

Quanto a interacdo e a adocao, recomenda-se aprofundar estudos com usuarios
em diferentes perfis (classificadores, comerciantes, técnicos de qualidade,

estudantes), com a combinacdo de métodos quantitativos (questionarios
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estruturados, experimentos controlados) e qualitativos (entrevistas, observacao em
campo) para compreender ndo apenas se 0 prototipo é percebido como util, mas
como ele se integra, ou ndo, as rotinas de trabalho. Esses estudos poderiam explorar,
por exemplo, o papel do aplicativo em ag¢des de formagdo, na comunicagdo com
compradores ou na padronizacéo de terminologias de pimentas.

Por fim, ao considerar o debate sobre ciéncia aberta e servicos digitais em
agricultura, trabalhos futuros podem avancar na disponibilizacdo do dataset e do
codigo-fonte em repositérios publicos, com documentacdo mais detalhada e
discussédo de modelos de governanca para manutencéo, atualizacdo e eventual

ampliacao colaborativa do repositério de imagens e do conjunto de classes.

5.5 Consideracdes finais

Os resultados obtidos ao longo desta pesquisa evidenciam que 0S objetivos
propostos foram alcancados. A utilizagdo da arquitetura YOLOV8 permitiu o
desenvolvimento e a avaliacdo de um modelo de deteccdo automatica para a
identificacéo de diferentes variedades de Capsicum spp. em ambientes comerciais de
maior complexidade, caracterizados por variacdes de iluminacdo, sobreposicao de
objetos e diversidade visual. As analises realizadas sugerem um desempenho
adequado do modelo diante dos desafios observados nesses cenéarios. Ademais, a
integracéo da solucdo a um protétipo de aplicativo mével demonstrou a possibilidade
de uso pratico da abordagem proposta, apontando para seu potencial de aplicacdo

em contextos reais.

Ao longo deste trabalho, a construcdo e o teste do prot6tipo App Pimentas
permitiram discutir, em um caso concreto, como técnicas recentes de visdo
computacional podem ser articuladas a necessidades especificas de um contexto
agroalimentar, que envolve classificacdo de produtos e disseminacédo de informacdes
de forma acessivel. Em vez de oferecer uma solucdo fechada, o estudo buscou
organizar um caminho de projeto, desde o planejamento do dataset até a implantacéo
em ambiente web, que possa ser reaproveitado, criticado e estendido por outros

pesquisadores e praticantes.

Sob a lente da Design Science Research, o artefato desenvolvido funciona como
um mediador entre o conhecimento técnico sobre redes neurais convolucionais,

modelos YOLO e arquiteturas web, e o conhecimento pratico de quem lida
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diariamente com a comercializacdo de pimentas e outros hortigranjeiros. Nessa
mediacdo, algumas questdes foram respondidas, como a viabilidade de uso de
YOLOV8 nesse dominio e a possibilidade de oferecer uma interface PWA acessivel.
Outras foram abertas, sobretudo no que diz respeito ao escalonamento da solucgéo, a
ampliacdo do conjunto de classes e a consolidacdo de evidéncias de impacto em

processos de trabalho.

Espera-se que as reflexbes e os procedimentos aqui sistematizados possam
apoiar nao apenas futuras pesquisas académicas, mas também iniciativas praticas
interessadas em aproximar visdo computacional, agricultura e servigcos digitais de

forma cuidadosa, gradual e sensivel ao contexto.
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APENDICE A - Questionario de validac&o do proto6tipo do aplicativo App Pimentas

J Questionario de Validacao do App de Identificacao de
Pimentas

Este questionario faz parts de um estudo cientifico parz vafidar o aplicativo mavel de identificacdo de pimentas desenvolvido para ausiliar no seu trabalho. Suz opinido & fundzmental
para avaliarmos a usabilidade o dezempenho do modelo de Inteligéncia Artificial & 3 apliczbilidads da farramenta em sua rotina
Instrugdes: Rezponda 3 cada afirmacdo utilizande 2 seguinta escalz de concordancia, baseadz na suz experiéncia durante o teste do aplicativo:

1. Discordo Totalmente

2. Discordo Parcialmente
3. Neutro

4. Concordo Parcialmante
5. Concordo Totaimente

Quandc vocé enviar este formulario. ele ndo coletara automaticamente seus detalhes, como nome e enderage de email, 2 manos que vocé mesmo o fornega.

¥ Obrigatoria

Bloco 1: Usabilidade e Experiéncia do Usuério (UX) *

Eu aprendi a usar o aplicativo
rapidameante {menos de 5
minutos).

A navegacdo entre as telas 2 2
fungao de tirar fotos s3c
intuitivas.

Foi facil manuzzar o celular 2
o aplicative nas condicdes de
iluminacdo do local
{galpao/box).




Bloco 2: Desempenho e Precisde da Inteligéncia Artificial *

Q aplicativo identificou
corretameante o tipo de
pimenta {&x Chilli, Fidalga,
Ziquinho).

Q aplicativo conseguis

clazsificar as pimentas mesmo

quando estavam misturadas '®)
ou parcialments
escondidas/cobertas.

A identificaco fomecida pelo

aplicativo esta de acordo com ~
a classificacdo padrio &,
utilizada no CEAGESP,

Bloco 3: Desempenho Operacional e Confianca *

Q tempo antre tirar a foto &
receber o resultado {laténcia) )
foi rapido o suficiente. -

Eu confio no resultado da
classificacdo deste aplicativo )
para tomar decisces sobre a )
pimenta {=x destinagdo ou
preco).

Q aplicativo funcionou de

forma estavel sem travar ou ~
perder 2 conexdo durantz o
uso.
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Bloco 4: Utilidade Percebida e Intengao de Uso *

1 2 3 4 5
A informagdo de classificagdo
fornecida pelo aplicativo & Gtil = = =
para 2 minha atividade (ssja O ) O O )
compra, venda ou conferéncia = g
de produto).
A idantificacdo preciza
agregada pelo aplicative ) ~ ~ -~ P
agrega valor 2 conferancia ou & o () O D)
negociacao da pimanta.
£u utilizaria este aplicative
SEMprE que pracizasss —~ ~ - -~
confirmar o tipo ou a ) O 9 @) @)
qualidzde de uma pimenta.
Nunca fornegs sun senha. Relstar ahuso
B Microsoft 365
Este conteddo foi criado pelo proprietario da formularic. Os dados que vooe smdar serdo env 2ap ietaria do f ario. A Mi it o e respy pela privackiade ou praticas de seg: G2 de
seus chentes, incuindo aqueles do proprietario deste formulina. Nunca forneca sua senha.
A ft Forms | Pe ionar gEes com Yagia de IA Criar mew propo formulario
o etar fe irio naa for uma politica de privatdade sobire como usard seus dacos e resposta. Nao forega inf s p ou s=ws. | Condigies de wsa
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APENDICE B — Acesso ao repositorio GitHub do App Pimentas

Este apéndice apresenta as informacdes necessarias para acesso ao repositorio

de cadigo-fonte utilizado no desenvolvimento do protétipo do aplicativo App Pimentas.

Plataforma: GitHub

Endereco do repositoério: https://github.com/divinomadalena8-

crypto/pimentas-api
Branch de referéncia: main

Commit utilizado na dissertacao:
203alcfdc499flac1124c9de7e906881aee98743

Data de acesso/validacdo do repositério: 11 nov. 2025

O repositério contém:

cbdigo-fonte do backend em FastAPI;

arquivos da interface web (HTML, CSS, JavaScript, manifesto e

service worker);
arquivo requirements.txt com as dependéncias necessarias;

arquivos de configuracdo e documentacdo minima para execucgao

local.



i applied sciences

ANEXOS A

by

Article

YOLOvS8m for Automated Pepper Variety Identification: Improving
Accuracy with Data Augmentation

Madalena de Oliveira Barbosa, Fernanda Pereira Leite Aguiar ', Suely dos Santos Sousa, Luana dos Santos Cordeiro,
Irenilza de Alencar Niis ** and Marcelo Tsuguio Okano

S check for

~ updates

Academic Fditors: Clandio Forone
and floberto Romansolhs

Receteod: 10 May 2028

Kviest: 18 fuse 225

Acceptnd: 20 fere 205

Putvisbe]: 22 pune X025

Citation:  Barbosa, M40 Agear.

FPRL, Souss S5, Comdomn, LS,
Nade, LEA Olasn, SUT YOLOw S
tor Awsomatnd Fopper Vasiety

P 1 A
o "

with Data Asgmentaten. Aypl 5o
2008, 15, 024 htpa/ / dotong/
10.35%) /app 151724

Copyright: © 2025 by the suthors.
Licensee MOPY, Basel. Switrerland
Thum artice 3 am opem acooss article
citrbased under the festes and
comatiome of the Croative Commons
Attritsation (OC BY) loenve

(hatpac/ / covativecommons. ung/
tcenses/ by /49/),

Graduate Program in Production Engineering, Unil dade Paulista, Rus Dr Bacelar 1212,
Sool‘auloMMSP mmmmmmgmmm JdOB)

wmall.com (FILA ) suelysousa 2etec sp govhbr (S4.55),
pvdluam hmnm’grm-lmmﬂ dS.C.1; mancelo okano I Sdocente unip be (M TO)
* Cormspondence: rmniles naasiidoosnte.unip be

Featured Application

The study indicates the practical application of YOLOvSm, a deep leaming architecture, for
real-time identification and classification of pepper varieties, providing a practical solution
for automating quality control and post-harvest sorting processes in food supply chains

Abstract

This research addresses the critical need for an efficient and precise identification of Cap-
sicum spp. fruit varieties within the post-harvest contexts to enhance quality control and

ensure consumer satisfaction, Employving the YOLOvSm convolutional neural network, the
study identified eight distinct pepper varieties: Pimento, Bode, Cambuci, Chilli, Fidalga,
Habanero, Jalapeno, and Scotch Bonnet, A dataset comprising 1476 annotated images
was utilized and significantly expanded through dats augmentation techniques, including
rotation, flipping, and contrast adjustments. Comparative analysis reveals that training
with the augmented datasel yielded significant improvements across key performance
indicators, particularly in box precision, recall, and mean average precision (mAPS0 and

mAP95), undericoring the effectiveness of data augmentation. These findings underscore
the considerable potential of CNNs to advance the AgriFood sector through increased au-
tomation and cofficiency. While acknowledging the constraints of a controlled image dataset,
subsequent research should prioritize expanding the dataset and conducting real-world

testing, to confirm the model’s robustness across various environmental factors. This study
contributes to the field by illustrating the application of deep learning methodologies to
enhance agricultural productivity and inform decision-making.

Keywords: pepper classification; YOLOvSm; computer vision in food supply; deep
learning; object detection

1. Introduction

The international trade of spicy peppers (Capsicint species) constitutes a vibrant and
economically significant sector within global agriculture and commerce [1]. Worldwide,
the demand for spice peppers continues to rise, fueled by their role in ethnic cuisines,
food preservation, and the growing recognition of their health-promoting properties, such
as capsaicin content [1-3]), Major producing countries, induding Brazil, India, China,
andd Mexico, utilize pepper cultivation as a vital agricultural activity that supports rural
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livelihoods, exports, and local economies [1,4]. The stability of the pepper production
chain ensures a constant market supply. The Food and Agriculture Organization (FAQ)
reported that global pepper production in 2022 reached 812,673 tons, with Brazil producing
approximately 128,331 tons [4], Peppers are essential spices and widely used horticultural
crops with global cultivation origins in South America [1]. Peppers, commonly used in the
culinary, pharmaceutical, and cosmetic industries, vary in color, heat, size, and shape. In
Brazil, varieties such as Malagueta (Capsicum frutescens), Dedo-de-Moga (Capsicum bacca-
tum), and Bode (Capsicum chinense) exhibit distinct traits, with seed variation influencing
their characteristics | 5],

Consumer satisfaction with spicy peppers is a multifaceted concept that significantly
influences market demand and product differentiation. This satisfaction is not solely de-
rived from heat level but also encompasses flavor profiles, aroma, freshness, and pereeived
health benefits [6,7]. Accurate identification of spicy varieties is crucial for optimizing
production, enhancing quality, and minimizing errors in post-harvest management and
market. Traditional post-harvest and market management screening methods are man-
ual, time-consuming, and prone to errors in peppers (Capsiciom spp.), which are widely
cultivated and valued for their diverse flavors, shapes, and heat levels. These limitations
underscore the need to adopt advanced technologies, such as computer vision, to streamline
post-harvest practices [5,9]

The sccurate identification of pepper (Capsicum spp.) varieties is a eritical concern in
agricultural production, as misclassification can result in substantial economic losses for
producers, diminished product quality, and compromised supply chain efficiency. Given
the increasing demand for specific pepper varieties in both domestic and international
markets, failure to correctly identity and classity peppers can result in reduced market
value, increased post-harvest losses, and a loss of consumer trust [1,4,5]. The complexity
of distinguishing between morphologically similar varieties, particularly in large-scale
operations, further worsens the inherent risks of errors associated with manual sorting and
screening processes. Consequently, there is a need for advanced, automated identification
methods to improve both the accuracy and efficiency of varietal discrimination in pepper
production systems [6]. Recent developments in image processing have sparked significant
interest in agricultural research [7]. The development and implementation of robust
computer vision-based detection systems hold considerable potential for transforming
post-harvest handling, quality control, and overall agricultural productivity by reducing
human error, lowering operational costs, and ensuring consistent product standards [10,11].

Adopting computer vision methods provides greater accuracy and speed in the identi-
fication process. Recent advances in object detection methods, particularly those based on
deep learning, have shown remarkable progress in agriculture, with several models pro-
ducing positive results in identification tasks [12], These technologies automate processes,
reduce errors, enhance agricultural operations, and facilitate research advancements, as
well as the integration of monitoring svstems, contributing to more precise and sustainable
agriculture. With the advancement of Al, deep learning has shown promise in address-
ing complex computer vision tasks in agriculture, with several deep learning algorithms,
such as convolutional neural networks (CNNs), being successfully applied to recognition
activities [13],

Integrating computer vision and artificial intelligence (Al), particularly with deep
learning techniques, has revolutionized agricultural practices. Object detection models,
such as convolutional neural networks (CNNs), have revealed substantial progress in
automating tasks previously performed manually, enhancing speed and accuracy [12).
The YOLO (you only look once) model family stands out due to its real-time detection
capabilities, However, image segmentation accuracy remains a critical factor for computer
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vision applications, as it directly impacts the performance of identification models. Recent
studies emphasize the importance of striking a balance between computational efficiency
and segmentation fidelity, thereby ensuring robust results without compromising system
performance [14],

Current research indicates that YOLO-based models are highly effective for detecting
and classifying Capsicum (pepper) fruits, including tasks such as growth stage classification,
segmentation, and real-time identification [10,15]. While YOLO and data augmentation
are well established for general Capsicum detection and classification tasks [15,16], their
application to efficiently and accurately identify pepper varieties remains underexplored.

The YOLOvSm (medium) model offers a favorable trade-off between detection accu-
racy and computational efficiency. It outperforms the smaller variants (nano and small)
in precision while requiring significantly fewer resources than the larger models (large
and extra-large), as previously verified in the current literature [16]. This outcome makes
YOLOvEm a robust and efficient choice for deployment on hardware-constrained de-
vices, The authors emphasize that the YOLO architecture was explicitly designed to be
scalable, allowing researchers and practitioners to adjust model complexity according to
the specific requirements of both the application and the available hardware. Moreover,
YOLO-based models have been increasingly applied in the agriculture sector for tasks
such as crop and pest detection, contributing to advancements in precision agriculture and
process automation,

To address these challenges, the present study develops an automated method for
identifying pepper varieties post-harvest using the YOLOvSm architecture and data aug-
mentation. The main contributions include the construction of an annotated image dataset,
the application of advanced deep-learning techniques, and a comprehensive evaluation
of detection performance. The paper is structured as follows: the subsequent sections
present the theoretical background, describe the materials and methods, report the re-
sults, and discuss the findings and implications for automated quality control in the
post-harvest scenario.

2. Related Work

Computer vision is a branch of artificial intelligence that enables machines to interpret
and analyze images to make decisions, This process utilizes cameras and computers to
identify, track, and measure targets, followed by image processing [17]. This technology
has increased automation and efficiency in various agricultural fields. Critical applications
include crop growth monitoring, disease control, product identification and classifica-
tion, automated harvesting, quality testing, and modern farm management automation,
Unmanned aerial vehicles (UAVs) equipped with computer vision technology are used
for acrial surveillance of agricultural lands, providing valuable data for decision-making,
Automating identification processes through computer vision offers significant benefits,
including increased efficiency and productivity, enhanced accuracy and consistency, early
problem detection, cost reduction, and continuous monitoring [17].

Deep learning (DL), a subfield of machine leamning (ML} and artificial intelligence (Al),
is considered a core technology of the Fourth Industrial Revolution, also known as Industry
4.0[18,19]. The word “deep” refers to the multiple layers through which data is processed
to build a hierarchical data-driven model. DL models can automatically extract features
from data, enabling them to handle complex tasks accurately. These models are widely
applied in healthcare, cybersecurity, business intelligence, and especially agricultural visual
recognition tasks.

According to Li et al. [20], convolutional neural networks (CNNs) represent a funda-
mental class of deep leaming models, particularly significant in the field of computer vision,
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The architecture of CNNis is designed to process grid-structured data, such as images. This
process is achieved through convolutional layers, which apply convolution operations to
extract local features from images, followed by pooling layers that reduce the dimensional-
ity of the features while retaining essential representations, These networks have shown
remarkable capabilities in learming complex hierarchical representations directly from data,
making them highly effective in pattern recognition tasks such as image classification,
object detection, and semantic segmentation. The capacity of CNNs to capture detailed and
abstract visual patterns makes them ideal for identifying various visual characteristics of
agricultural products, such as shape, color, and texture, which are critical for distinguishing
between different pepper varieties [21].

Recent studics show that deep leaming methods substantially enhance the detection
and classification of agricultural diseases and renewable energy sites. loannou and Myroni-
dis [22] used convolutional neural networks (CNNs) with high-resolution satellite imagery
to automatically and accurately detect photovoltaic farms, offering a scalable tool for en-
engy monitoring. In agriculture, Arnob et al. [23] found that ResNet50 outperformed other
deep-learning models in classifying cauliflower diseases, achieving an accuracy of 90.85%,
Roy and Kukreja [24] applied vision transformers (ViTs) for rice leaf disease detection
and severity estimation, surpassing some limitations of traditional CNNs and achieving
strong performance in both classification and severnity assessment. Together, these find-
ings highlight the value of advanced Al models in both environmental monitoring and
precision agriculture,

Hussain [25] explains that the YOLO (you only look ance) model represents an inno-
vative approach to real-time object detection, using a single convolutional neural network
that stmultaneously predicts bounding boxes and class probabilities from an image divided
into a grid. This architecture enables the model to process the entire image simultane-
ously, resulting in high frame-per-second rates suitable for eritical applications such as
surveillance, autonomous driving, and industrial automation. In post-harvest agricultural
contexts, YOLO's efficiency is emphasized by its ability to perform accurate real-time detec-
tions, supporting real-time monitoring and identification essential for dynamic agricultural
environments, such as fields or conveyor systems sorting produce [26].

The YOLO architecture has evolved substantially since its inception, with each version
introducing significant enhancements to improve object detection accuracy, speed, and
computational efficiency. YOLOv1 marked the initial step toward real-time detection using
a grid-based approach to predict bounding boxes. Building on this, YOLOv2 incorporated
anchor boxes, significantly improving localization accuracy. YOLOv3 further refined the
model by adopting the Darknet-53 architecture and integrating feature pyramid networks
(FP'Ns), enabling better generalization across object scales. In YOLOv4, additional architec-
tural innovations were mtroduced, including the Bag of Speaals (BoS), which improved
accuracy without sacrificing speed. A significant shift occurred with YOLOVS, implemente!
in PyTorch, where optimizations in training processes and the integeation of Cross Stage
Partial Network (CSPNet) and Path Aggregation Network (PANet) enhanced performance
and modularity. YOLOv6 introduced reparameterization technigues and novel backbone
designs for greater efficiency. Continuing the trend of architectural improvements, YOLOv?
employed Efficient Layer Aggregation Network (ELAN) blocks to improve feature leaming,
With YOLOvSm, the focus turned to computational optimization and mone refined training
strategies, making it suitable for resource-constrained environments, YOLOVY introduced
programmed gradient information (PGI) to further enhance detection precision and ef-
ficiency. Most recently, YOLOvI0 eliminated the traditional non-maximum suppression
(NMS) step, streamlining the detection of multiple overlapping objects and enhancing
throughput for dense scenes. This progression reflects a continuous drive to balance speed,
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accuracy, and model simplicity, particularly in real-time agricultural applications such as
pepper variety identification [11].

These developments position YOLO as a leading architecture for real-time visual
classification systems in the agricultural sector. In parallel, other deep learning approaches,
such as convolutional neural networks (CNNs) combined with transfer learming, have also
indicated strong practical potential in the agricultural sector. Previous studies have shown
their effectiveness, particulardy In the pepper production chain. Ren et al. [27] developed a
model to classify bell peppers (Capsicunt annusm) based on external quality, utilizing pre-
trained neural networks and image capture tools. Their approach achieved high accuracy
(98.14%) and low loss (0.0669), showing excellent performance and generalization without
requiring manual feature extraction,

Kurtulmus et al, [25] investigated the classification of pepper seeds using computer
vision and neural networks. Their study involved extracting color, shape, and texture
features from the seeds and using a multilayer perceptron (MLP) for classification, achieving
an accuracy of 84.94%, This advancement underscores the feasibility of applying CNNs at
various stages of the pepper production chain, from seed to final product. Furthermore, a
deep learning model utilizing convolutional neural networks (CNNs} for disease detection
in pepper leaves was developed based on a dataset of 2478 images.

Previous research [29] has emphasized the use of transfer learning to enhance diag-
nostic accuracy under cultivation conditions. Their results presented an accuracy of 99.55%
in distinguishing between healthy and diseased leaves, highlighting the model’s practical
applicability for early disease detection In agriculture.

Presenting additional application lines, Mohi-Alden et al. [30] developed an intelligent
clagsification system for bell peppers using deep convolutional neural networks (DCNN).
By employing a modified ResNet50 architecture, the system achieved an accuracy of 96.89%
in classifying bell peppers based on maturity stage and size. The system was integrated
into a computer vision-based sorting machine, showing significant potential to improve
classification processes in the food industry, with an overall sorting rate of approximately
3000 samples per hour.

Research on applying CNNs and transfer learning to dassify and detect quality,
types, and diseases in bell peppers reveals significant potential to transform food quality
assessment practices. P'revious studies have proven that integrating these technologies can
enhance the accuracy, reduce costs, and increase the efficiency of agricultural processes [31),

3. Materials and Methods
3.1, Data Recording

Figure 1 presents a schematic overview of the five-step methodology employed for
automated pepper variety identification using the YOLOVEm model. Step 1 involved image
collection, where photographic images of eight Capsicum frult varieties were acquired to
establish the initial dataset. Step 2 involved image annotation, where the collected images
were standardized to a 640 x 640 pixel resolution and annotated with bounding boxes to
identify Capsicum fruit instances using the Roboflow platform. In Step 3, we performed
the initial model training using the YOLOvSm model. Step 4 involved data augmentation,
where we enhanced the model’s generalization and expanded the dataset to include larger
images through data augmentation techniques. In Step 5, the YOLOvEm model underwent
final training using the full and augmented dataset.

The first step involved training the YOLOvBm model using a dataset comprising
1476 images representing eight distinct pepper varieties. Initially, the dataset consisted of
approximately 300 images, collected exclusively through in-person visits to the Company
of Warehouses and General Stores of Sdo Paulo (CEAGESP (a major public enterprise
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in Brazil and one of the largest wholesale food centers in the world and the largest in
Latin America). Located in Sao Paulo, Brazil, CEAGESP plays a crucial role in the supply
chain of horticultural products, fish, flowers, and other food items, The main unit in Sao
Paulo is the langest such center in South Amernica and handles a significant volume of food
products annually, where photographs of the eight pepper types were captured under real
market conditions using various devices, including the Samsung Galaxy Tab AS tablet,
which features an 8 MP rear camera; the Samsung Nikon Coolpix L120, a compact camera
with a 14.1 MP CCD sensor and a 21 x optical zoom lens; and the iPhone 11 smartphone,
which has a dual 12 MP camera and 4 K video recording capability. These devices ensured
high-quality, versatile image capture in diverse market settings, However, as the research
progressed, it became evident that expanding the number of pepper varieties was essential
to enhance the model’s generalization capacity and practical applicability [32].

m-.eﬂol«am.-- [ Peomomng®- | I Ostmespin ™ Awmumdi YOLOWM Trainng & |
CEAGESP & Dilng P usiog GI0nE40, Amctate | ) Trskn 84K / Val 10 / Tagt 276 | Rutube $30, Gasssmn 81 Il + Agmenied
Step 1 Step 2 Step 3 Step 4 Step 5

Figure 1. Steps adopted in the current research to identify Capsicum fruits.

Another critical factor was the need to incorporate greater product variability. Obser-
vations at CEAGESP indicated that the peppers available for commercial sale exhibited
high-quality standards, resulting in limited variation in size, coloration, and overall product
condition, This high level of visual uniformity could potentially restrict the model’s ability
to accurately identify peppers in more diverse real-market conditions, where variations
in texture, ripeness, lighting, and shape are more common. An alternative approach was
adopted to expand the dataset to address this limitation: sourcing images from online
platforms, including open-access databases such as Google Images under the Creative Com-
mons license. Image selection was based on quality criteria, prioritizing high resolution
(=300 dpi) and a diversity of angles to ensure a dataset that is more representative of the
commercial reality of peppers across different contexts.

In the second step, the images were normalized to 640 px x 640 px and annotated
with bounding box annotations using the Roboflow platform [33]. As Matuck et al. [34]
described, Roboflow is a computer vision tool that streamlines the training and deployment
of real-time object detection models.

The platform supports image importation, labeling, data preprocessing, model train-
ing, and deployment, making the development of computer vision models more accessible
and efficient, Through this platform, the images were annotated, and distinet classes were
created for each pepper variety: Biquinho Pepper, Bode Pepper, Cambuci Pepper, Chilli
Pepper, Fidalga Pepper, Habanero Pepper, Jalapeno Pepper, and Scotch Bonnet Pepper.

Table | presents a photographic reference and concise morphological description
for the eight pepper cultivars contained in the study (Biguinho, Bode, Cambuci, Chilli,
Fidalga, Habanero, Jalapeno, and Scotch Bonnet). Each cultivar is provided with its
common name, scientific designation, and key visual traits (shape, color, color variation,
and size). These descriptors justify the class labels emploved during image annotation and
highlight the fine-grained features the YOLOvEm network must learn to distinguish during
automated detection.
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Table 1. Image, name, variety, and morphological description of the eighth studied pepper.
Image of the Peppers Name/Variety Description
Small, teardrop-shaped, glossy red fruits
Biquinho/Capsicum chinense measuring 2-3 em long and 1-2 em
in diameter.

Round and bulbous, yellowish, typically
yellow or red, 2-4 cm in both height and
diameter, with a distinctly
wrinkled surface.

Bode /Capsicum clunense

Bell-shaped with pronounced lobes, green
Cambuci /Capsicum hacoatum in color, measuring 4-6 cm in diameter
and 3-5 cm in height.

Elongated and slender, bright red or
Chilli /Capsicum annuum chocolate, typically 8-12 cm long and
1-2 cm in diameter.

Small and round, shiny yellow, about

NS/ Clpieuin clsisiicns 2-3 cm in diameter and 2 cm in height.

Oval and lantemn-shaped, orange, 3-6 cm
Habanero/ Capsicum chinense long and 24 cm in diameter, with a
wrinkled texture.

Medium-sized, cylindrical, dark green,
Jalapeno /Capsicum annusnt measuring 5-9 cm in length and 2—4 cm in
diameter, with a tapered end.

Pley)y s

Squashed-round shape, yellow, 4-6 em in
Scotch Bonnet /Capsicim clinense both height and diameter, with a
wrinkled appearance.

3.2, Dataset Partitioning and Preprocessing Steategies

In the third step, the dataset was then divided into three distinct subsets to increase the
volume and diversity of training samples, considering the limitations of the initial dataset:
o Training Set: 1245 images (84% of the total)
e Validation Set: 201 images (14% of the total)
o Test Set: 30 images (2% of the total)

Although the final test set comprised only 30 images (1% of the total dataset), this
decision prioritized maximizing the volume and diversity of training data, which is critical
for enhancing deep learning performance in object detection tasks, Although the test set
was relatively small (30 images), it was carefully constructed to ensure visual diversity,
encompassing vanations in lighting, angles, and fruit morphology, thereby reflecting real-
world application scenarios. To reduce the risk of overfitting, data augmentation techniques
such as rotation and Gaussian blur were employed to introduce controlled variability and
improve the model's generalization capacity. The stabilization of performance metrics after
100 epochs, along with consistent improvements observed with the use of augmented data,
indicates a well-adjusted model. Approximately 900 instances were generated for each
pepper variety at the end of the process. Subsequently, a second round of model training
was conducted using an augmented dataset.

This methodological approach is consistent with the findings of Frizzi et al. [35],
who verified that in data-scarce scenarios, a langer training partition combined with data
augmentation effectively mitigates overfitting, provided the validation and test sets retain
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representative variability. While this principle guides our methodology, we acknowledge
that the limited size of the current test set constrains a definitive evaluation of the risk of
overfitting. Future research should incorporate strategies such as cross-validation and an
expanded test dataset to enhance the robustness and reliability of the findings,

3.3. Data Augmeniation

In the fourth step, we emploved data augmentation. This process enlarges a training
dataset through techniques such as rotation, flipping, cropping, and contrast adjustment,
thereby enhancing the model’s generalization and pertormance [35]. Data augmentation
techniques were applied to the training set to improve the generalization capacity of the
YOLOvSm model and optimize its accuracy in pepper identification, This strategy aimed to
simulate natural vanations in real-world image capture conditions, making the model more
robust to changes in lighting, angles, and image sharpness. The augmentation methods,
such as rotation and blurring, were selected based on prior studies indicating their positive
impact on YOLOvSm accuracy. In contrast, cropping was excluded due to its tendency to
eliminate critical features in small objects [36].

In this study, data augmentation techniques were applied strategically in two distinct
phases, Initially, the YOLOvBm model was trained on the original dataset to establish
a baseline for pesformance. Subsequently, data augmentation methods such as rotation
and Gaussian blur were introduced during a second training cyvcle, allowing for a more
controlled assessment of their specific impact on the model’s generalization capabilities,
Although it is common practice to apply data augmentation before the initial training phase,
as noted by loannou and Myronidis [22], the adopted approach offered clearer insights into
how augmentation influenced convergence behavior and class-level detection performance.
The observed improvements in metrics such as box precision and mAP during the second
phase demonstrated that post-baseline augmentation not only enhanced generalization but
also contributed to the model's robustness in recognizing subtle morphological differences
among pepper varieties. Additionally, this phased methodology enabled more efficient use
of computational resources by avoiding unnecessary dataset expansion before validating
the model's initial learning performance.

Based on these indications, the following procedures were applied to the training dataset:
e Rotatior: Images were randomly rotated at angles between —307 and +30°, increasing

pesspective variability and reducing the model's dependence on fixed angles,

e Blurring: A soft Gaussian blur filter (3 x 3 kernel) was applied to simulate focus
variations that may arise due to camera movement or differences in image quality.

e  Following data augmentation, the dataset increased to a total of 3964 images, with the
final data split structured as follows:

Training Set: 3733 images (94% of the total)

Validation Set: 201 images (5% of the total)

Test Set 30 images (1% of the total)

The dataset was divided into training (94%), validation (5%, and test (1%) subsets to
increase the volume and diversity of training samples, considering the limitations of the
initial dataset. Tables 2 and 3 provide the specifications necessary for reproducibility of
the training process. This configuration represents a standard cloud-based training setup,
ensuring that the model can be reproduced under similar computational conditions,

Hyperparameters were defined based on the default configurations provided in the
defaults.yami file of the official Ultralytics YOLOVS implementation. These values reflect
established best practices for training object detection models [37]. The use of standardized
configurations ensures methodological consistency with the YOLOvVS framewark and
facilitates the comparability of results across related studies.
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Table 2. Hardware specifications and relevant softwane environments tor the reproducibility of the
training process,

Parameter IT Environment
Operating system Ubuntu 20.04/Google Colab VM
Processor Intel{R) Xeon(R) CPU @ 2.20 GHz
RAM 13GB
Gru NVIDIA Tesla T4 (16 GB VRAM)
CUDA version 118
Python version 310
YOLOWS version Ultralytics §.1.0
PyTorch version 201
Training environment Google Colab
Table 3. Key hypery dopted for training the YOLOvSm model.
Hyperparameter Value Description
epochs 200 Number of training iterations
batch_size 16 Training samples per batch
imgsz 640 Input image resolution (square)
10 0.01 Initial leaming rate
Irf 0.01 Final learning rate decay factor
momentum 0,937 SGD momentum
weight_decay 0.0005 Regularization parameter
optimizer auto Optimizer automatically selected (typically SGD)
patience 100 Early stopping patience (epochs without gain)
mosaic 1.0 Mosaic augmentation enabled
fliplr 0.5 Horizontal flip probability
translate 0.1 Image shift augmentation
scale 0.5 Image scaling range for augmentation

3.4, YOLO Usage

The selection of the YOLOvEm model s justified by its superior performance in agricul-
tural contexts, particularly in terms of accuracy, inference speed, and model compactness,
compared to alternatives such as EfficientDet and CenterNet. YOLO's architecture, which
frames object detection as a single-pass regression problem, provides a significant velocity
advantage crucial for real-time applications [12].

This claim is substantiated by a systematic review of 30 studies by Badgujar et al. [26],
which concluded that YOLO models consistently outperform frameworks such as SSD,
Faster R-CNN, and EfficientDet in agricultural tasks. Given its verified efficiency and
accuracy, YOLOvEm is well suited for the present study on varietal pepper classification in
uncontrolled environments. Figure 2 illustrates the flow of features through convolutional
layers, C2f modules, and the anchor-free detection head.

The fifth step involved model training conducted using the Google Colab 'ro infras-
tructure [38], which ensured access to hardware acceleration for deep learning tasks. The
computational configuration comprised an NVIDIA Tesla T4 GPU with 15 GB of VRAM,
driver version 550.54,15, and CUDA version 124, Available memory was 15.36 GB, with
GPU power consumption ranging from 9 W (minimum usage) to 70 W (maximum capacity).

The frameworks used were Python 3.10.12 [39], PyTorch 2.5.1 [40], and Ultralytics
YOLOv8m [37], along with OpenCV [41] and Roboflow [33]. Google Colab Pro was selected
due to its access to high-performance GP'Us, which enables the efficient training of the
YOLOvEm model within a reduced time frame. The programming language used was
Python [39], in combination with several specialized libranies, including;
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e OpenCV: For image manipulation.
e TensorFlow: For model construction and training,
e PyTorch: An alternative deep learning framewaork [40].

Figure 2, Diagram of the YOLOVS architecture, including backbone, neck, and head components,
Adapted from [33].
After training, the model’s performance was evaluated using the following metrics
provided by the YOLOvEm CNN (Equations (1}-(3)):
*  Box Precision (BoxP): Measures the accuracy of bounding box predictions relative to
the annotated boxes (Equation (1))

Precision = TP/(IP + FFP) (1)
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where TP = true positive, and FP = false positive. The TP is a predicted bounding box
that correctly matches a ground truth bounding box of the same class. FP is a predicted
bounding box that does not correspond to a real object.

e Recall (R): Measures the proportion of true positives among all positive instances in
the dataset (Equation (2)),

Recall =TP/(TP) + (FN) (2)

where TP = true positive, and FN = false negative, The FN is a ground truth bounding box
that the model failed to detect.

®  Mean Average Precision at 507 loU (mAPS0): Calculates the average precision across
different intersection-over-union (loU) thresholds, focusing on a 50% threshold (Equa-
tion (3}). The mAPS0 is a standard metric for evaluating object detection models. It
represents the average of the average precision (AP) calculated for each object class.
For this metric, a predicted bounding box is considered a true positive only if its inter-
section over union (foU) with a ground truth box of the same class is 0.50 or greater.
The AP for each class is the area under its corresponding precision-recall curve, re-
flecting the trade-off between precision and recall at varying detection confidence
thresholds under the (.50 ToU criterion.

mAPs) = (1/N) % £ [AP<sub>g, ToU = 050</sub>] fromc=1to N (3)

where N = total number of object classes, and AP_c, 0.50 = average precision for class ¢,
calculated using an loU threshold of 0,50, This metric refers to the arca under the precision-
recall curve for class ¢, where predictions are counted as true positives if their loU with
ground truth i greater than 0.50,

®  Mean average precision at 95% loU (mAP95): Calculates the average precision at a
stricter 95% loU threshold {(Equation (4)).

mAPs = (1/N) » E [AP<sub>¢, loU = 095</sub>] fromc=1to N (4)

where N = total number of object classes, and AP _c, (.95 = average precision for class ¢,
calculated using a fixed ToU threshold of (.95, This metric is the area under the precision—
recall curve for class ¢, where predictions are counted as true positives if their loU with
ground truth is greater than 0.95.

The YOLOvEmM model was chosen for the present study due to its proven efficiency
in real-time object detection tasks, aligning with the precision and speed requirements for
identifying pepper varieties. This version represents a significant advancement within
the YOLO family, combining architectural enhancements and advanced training tech-
niques, making it particularly suited for agricultural applications. According to Terven
and Cordova-Esparza [11], YOLOv8m achieved superior performance in metrics such as
mean average precision (mAP’) compared to earlier models, including YOLOVS, and even
competing approaches like Faster R-CNN, The results were compared between datasets
with and without augmentation, highlighting the impact of data augmentation on the
YOLOvEm model’s performance in pepper detection. Figure 3 shows the workflow of
the methodology.
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4. Results

This study investigated the training of the YOLOvSm convolutional neural network
(CNN) to identify eight distinct varieties of peppers. The model’s performance was evalu-
ated both with and without the application of data augmentation techniques, considering

key metrics such as bounding box precision (BoxP), recall, and mean average precision
across different intersection over union (loU) thresholds (mAPS0-95).
Table 4 summarizes the evolution of global detection metrics—bounding-box precision

(BoxP), recall, mAP<sub>50</sub>, and mAP<sub>50-95< /sub>—at four representative
training epochs (10, 50, 100, 170) for models trained with and without augmentation. The

results indicate that rotation and Gaussian-blur augmentation accelerated convergence and

yielded substantial gains.
Table 4. 5 y of the model training to identify peppens.
Box!' with Recall with mMAPSE with mAPSL95
Epochs Boxl Aug. Recall Aug mAPso Aug mAPS)-95 with Aug.
0 0169 0.340 0.206 0387 e 0360 0061 18
S0 0.526 705 0,570 0405 05 0656 0278 0.3
1m0 0626 0.749 0.599 0576 0sh 0676 0334 0403
17 1694 (o84 0.600 Ua3S 0473 Qe 0361 0371
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The results presented in Table 4 indicate the model’s performance progression through-
out the training process, highlighting the positive effects of data augmentation. The appli-
cation of these techniques led to improvements across all evaluated metrics.

Continuing training beyond 100 epochs revealed the stabilization of performance
metrics, indicating that the model had reached an appropriate point of convergence for the
dataset. This behavior suggests that increasing the number of epochs beyond this threshold
would not yield significant improvements in the model’s learning performance,

Figure 4 shows that the results display consistent improvements in box precision,
recall, and mean average precision (mAFP) when augmentation techniques were applied,
indicating enhanced generalization capabilities of the model.

Average Detection Metrics per Class: With vs Without Data Augmentation

W WEhout Augmentalon
- WEh Augmentation

0704
0.671 0.684

0885 47y

0659

A S
J’ & g@ﬁ ‘gog‘?
Figure 4. Comparison of object detection performance metrics between training with and without
data sugmentation.

The comparative analvsis between models trained with and without data augmen-
tation techniques revealed consistent improvements in the average values of precision,
Fl-score, and AP@0.5:0.95. These results underscore the importance of incorporating
data augmentation methods to enhance the robustness and generalization capacity of
object detection models. As emphasized by Abdulkareem et al. [42], applying geometric
transformations such as rotation, flipping, and scaling increases the visual diversity of
the training dataset. This broader variability enables convolutional neural networks, par-
ticularly those based on the YOLO architecture, to detect objects more accurately across
different orientations, scales, and visual perspectives.

Table 5 provides the class performance values (BoxP, recall, mAP<sub>50</sub>,
and mAP<sub>50-95</sub>) for the best non-augmented and augmented models after
170 epochs, The table highlights how varietal morphology affects detector sensitivity and
where further targeted data enrichment may be necessary.
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Table 5. Result of cach class in the last training.

Hoxl” with Recall with mAPS0 with mAY50.95

Class BoxP Aug, Recall Aug. mAP) Aug mAPS0-95 with Aug,
Baquinho-Tepper 0693 0638 516 11450 0630 ase2 0 0386
Pepper 0s18 0638 0.8% 0.564 N5 7 0566 0.29%
Cambuci-Pepper 0747 0532 0.75% 0.777 UBLH ax7 0584 059
Chilli-Fepper Lk k) 0750 0.595 0720 [AYS 1) 04.2%0 0622 0.345
Fidalga-Peppes 0764 0652 (1.579 0592 0701 0s™ 0426 0377
Habanero-Pepper 0636 057 0.613 1.667 D641 0693 0748 0.675
Jalapeno-Pepper L7543 05% 0775 075 nae amm 0422 (489
ScotchBannel-Pepper 0756 0746 057 0542 0720 0708 044 0415

The data show that the impact of data augmentation varied across classes, with some
varleties benefiting more from the technique than others (Supplementary material). Peppers
that showed improvement with data augmentation:

e Cambuci-Pepper achieved the highest gains through data augmentation, reaching

0,852 in BoxP (+14%) and 0.827 in mAP50 (+1.1%).

e Chilli-Pepper also identified significant improvements, particularly in recall (+22%])
and mAPS0-95 (+31%),

The peppers with more stable or decreased performance with data augmentation were
the Fidalga Pepper, which showed a reduction in precision (BoxP dropped from 0.768 to
0.652), suggesting that the model may have been affected by noise in the newly generated
samples, and Habanero-Pepper, which also showed a decline in BoxP (from 0.636 to 0.577);
however, it showed an improvement in recall (+8.8%), indicating that more objects were
detected, even though with lower precision,

The peppers that consistently performed well under both conditions were the Jalapeno
pepper and Scotch Bonnet pepper, which exhibited minimal variation between tests. This
result suggests that the model effectively captures their visual characteristics, regardless of
the training strategy.

Observations of the results on test images also raise several considerations. Figure 5
presents eight subligures (a to h) showing the YOLOvSEm model’s detection of each pepper
class on test images. The cight pepper varieties evaluated in the study are (a) Biquinho, (b)
Bode, (¢} Cambuci, (d) Chilll, {¢) Fidalga, (f) Habanero, (g) Jalapeno, and (h) Scotch Bonnet,
The bounding boxes inside the images highlight the detections made by the model, along
with the confidence scores assigned to each prediction.

The confidence values vary from image to image, as they depend on the specific
conditions of each sample evaluated by the model. This variation in confidence arises from
multiple factors, including lighting and contrast, the position and angle of the peppers,
instance overlap, image quality, and resolution. Such fluctuations in confidence values are
expected and reflect the model’s robustness when dealing with diverse capture conditions,
However, the variability in prediction confidence suggests that the model can still be
optimized to reduce fluctuations in values across different images. Strategies such as
adjusting the detection threshold, refining class balance, and implementing post-processing
techniques could help improve the consistency of predictions,
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(c) (d)

(8 (h)
Figure 5. Example of results of the model tests using samples of the Capsicunr frutts: {a) Biquinho;
(b) Bode; (¢) Cambuci; (d) Chilli; (¢) Fidalga; {f) Habanero; (g) Jalapeno; and (h) Scotch Bonnet. The
bounding box defines the spatial location and extent of the detected object

5. Discussion

The reduction in precision observed for the Fidalga-Pepper and Habanero-Pepper
classes may be attributed to the introduction of variations that do not accurately represent
the actual distribution of the training images. The reduced performance observed in certain
pepper varieties, such as Fidalga, is likely attributable to their visual similarity to other
yellow, rounded types like Habanero and Scotch Bonnet, combined with the possible
introduction of unrealistic variations dunng data augmentation, which may have impaired
the model’s ability to distinguish subtle inter-class differences. This effect has already been
documented in the literature, as noted by Yilmaz and Kutbay [36], who indicate that data
augmentation techniques can, in some cases, generate unrealistic instances, hindering the
model’s generalization capacity. The variation in performance across classes suggests that
some pepper varieties possess visual characteristics that facilitate detection, while others
require further refinement of the model to improve detection,

The application of data augmentation also impacted the total training time of the
model. Without augmentation, training was completed in 200 cpochs, totaling 3 h and
43 min, Using the augmentation technique, there was a reduction in epochs (170), but the
processing time more than doubled, reaching 6 h and 54 min. This increase in processing
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time, from 3 h and 43 min without augmentation to 6 h and 54 min with augmentation,
can be attributed to the larger volume of images and the increased computational com-
plexity introduced by greater sample diversity. This impact on training time aligns with
the findings of Yilmaz and Kutbay [36], who report that applying data augmentation
techniques can significantly increase model execution time, especially when implemented
on large datasets. The increase in training time needs to be weighed against the gains
in model accuracy. Although data sugmentation yielded better performance for some
pepper classes, the computational cost remains a critical factor for deploying the model in
real-world applications.

The present study’s findings confirm previous research [43], indicating the effec-
tiveness of computer vision in agricultural product identification while highlighting the
challenges associated with automated pepper detection, An earlier study [17] highlights
the increasing application of computer vision in agricultural automation, noting that
CNN-based models can replace traditional screening methods, thereby reducing time and
minimizing human error. Similarly, Li et al. [10] show that the performance of CNNs is
highly dependent on the quantity and diversity of the dataset, which explains the positive
impact of data augmentation observed in the present study.

The choice of YOLOvSm for this study aligns with research by Hussain [25] and
Terven and Cordova-Esparza [11], who highlight the YOLO architecture’s advances in
efficiency and speed in agricultural object detection. This study reinforces these findings,
demonstrating that YOLOvSm can accurately identify pepper vaneties, especially when
trained on a diverse dataset,

We observed a clear trend based on the experimental results: model performance,
as indicated by metrics such as mAPS0 and AP50-95, generally improves with increased
training from 10 to 200 epochs without data augmentation. However, further training to
400 epochs yields diminishing returms and introduces the risk of overfitting, In contrast,
data augmentation, particularly evident after 50 epochs, substantially enhances the model's
generalization capabilities across the eight distinct pepper varieties. This result points out
the crucial role of data augmentation in enabling extended training durations to achieve
robust and accurate fine-grained classification,

The YOLOvEm model indicated a notable improvement in performance after applying
data augmentation techniques. Key metrics such as box precision (BoxP) and recall showed
significant gains after 50 epochs, with further stabilization observed after 100 epochs. For
instance, the mAP50 for Chilli-Pepper increased from 0.648 to 0.790 with augmentation,
while the recall for Bode peppers improved from 0.436 to 0.564. The precision and recall val-
ues across the eight pepper varieties indicate the model’s capacity to differentiate effectively
between them. These results underscare the crucial role of data augmentation in enhancing
the performance of CNN models in agricultural contexts, Jaying a solid foundation for
future advancements in automated crop identification and management systems.

Future research should explore advanced architectural enhancements, such as in-
tegrating attention mechanisms (e.g., SE-Net, CBAM), to improve spatial and channel
feature refinement. Alternatively, emploving ensemble approaches that combine predic-
tions from multiple models could increase robustness across heterogeneous field conditions,
Investigating lightweight architectures (e.g., MobileNet, YOLO-NAS) may also support
deployment in edge devices used in precision agriculture.

6. Conclusions

The present study presents a practical application of the YOLOvEm CNN in identifying
eight distinct Capsicum pepper varieties. Implementing data augmentation techniques
significantly enhanced the model’s precision, recall, and mean average precision (mAP)
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metrics. These findings underscore the potential of deep learning to revolutionize food
quality practices, particularly in automating management tasks,

Although this research identified the effectiveness of the YOLOvEm model for pepper
identification, further research is essential to enhance the model’s robustness in real-world
scenarios by including images captured under diverse reabworld conditions, such as
varying lighting intensities, partial ccclusions from overlapping produce, heterogeneous
backgrounds, and differences in image resolution and camera angles. Exploring advanced
techniques, such as transfer learning and alternative object detection models, could improve
the model’s generalization capacity and adaptability.

Suppl v Materials: The following supporting inf ion can be downloaded at: hitps/ /www

Ll

mdproom /article / 103390/ app 15137024 /51, All results with and without the augmentation procedure.
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Abbreviations

The following abbreviations are used in this manuscript:

YOLO You only look once (real-time object detection framework)

CNN Convolutional neural network

MobileNet CNN architecture developed by Google, designed Lor mobile applications
5q and-excitath K (a ch ) attaotion madhanisa for

o improving CNN performance)

CBAM Convolutional block attention module (a lightweight attention module
combining spatial and channe! attention)

YOLO'NAS YOLO with neural architecture search (an optimized variant of YOLO using

automated architecture search for improved accuracy and efficiency)
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.} mn—-tvm—utn-;.-n.
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Unguagess: 7Y THON.
SAVA SCRIFT
HisL
=N
Campo do Agicacia: INDG - TECNOLOGHA (POLITICA TECNOLOGICA, COOMERACAD
TECNOLOGIA APROPFIADA, CURACA

ME TALLRICICA, ENGENHARGA
AUTONOTIVA, mmne

Tipo de Programa: AFO1 - APLICATIVOS

it TS s 23100, Padco SIS0 (A8 -

Pt WL B, e Y RIS, g WY
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Dovden do Auter

Astor 100 2

Nome: MADALENA OF OUVEINA BARSOSA
OF: sowos

Nodoraidods tirasders
Qualicncto Flscs: Mestanco

Auder 2 de 2

Enderepy: Mecm Gatvarn, 8 Apt 188, Toom |- Pregue Sao Vioens
Conde: Naus
(=
cup: s
Pals: BRASL
Tulafore: (1) 993 937181
Fac
Erral: mraddermstinofieiec spgor.te

Noma: NARCELOD TSLCUIO OKAND
CFF: 10094167500

Nosorebcuds: Beasbars
Qualioacho Flica: Mesgusecse

Endereps: Fam Ergertero Nusars! Sorceell, 54
Cidede: Seo Sermuo do Curga
Extnctr. S
CEP: tated-2ua
Pule: BRASL
Telotone: (11199 Cmsrs
Fax
Emal charofivas.comsr

Decmsgio do Vancideds - DV

Nome: dedanogVereosede- T sasree it

it

e AL I, e 1 SRS, . 45

r . TSRS

TS s 200, Pedgio SII0A01 08484
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DECLARAGAO DE VERACIDADE - CLIENTE

Em a a ©m vigor eu, MARCELD TSUGLEO OKANO,
CPF: 100.941.478-09, declare, para ns do drelio, sob as penas da Lal @ em
atandimento 20 art. 2° do Decreto n® 2.556%, da 20 do abril do 1958, que a5
Ges foitas no a o do o -

530 @ aulé

Fico contie araves dasso Q% a dessa 20 conhgura
aime previsio no Codigo Penal Braslielo ¢ passival 0o 2puracao na foma da Lal.

Cxnio das responsabiidades pola 30 o a
c.g P—————
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