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RESUMO 
 

 
A crescente demanda por eficiência e padronização no setor agroalimentar tem 
impulsionado a adoção de tecnologias da Agricultura 4.0. Nesse contexto, a aplicação 
de técnicas de visão computacional e aprendizado profundo desponta como 
alternativa estratégica para modernizar cadeias agroalimentares. Este estudo avaliou 
a aplicação da arquitetura YOLOv8 na identificação automática de variedades de 
pimentas (Capsicum spp.) com o desenvolvimeno adicional de um aplicativo móvel 
(PWA) que integra o modelo treinado, oferecendo suporte interativo por meio de um 
chatbot. Para tanto, foi construído um dataset inicial de 1.476 imagens coletadas na 
CEAGESP e em repositórios públicos, anotadas e expandidas por meio de técnicas 
de data augmentation, o que totaliza 3.964 imagens. O modelo foi treinado em dois 
cenários (com e sem augmentation) e avaliado pelas métricas Box Precision, Recall, 
mAP50 e mAP95. Os resultados evidenciaram que o uso de augmentation elevou a 
robustez do modelo, alcançando um mAP50 de 0,694 e mitigando riscos de overfitting. 
Além do desempenho experimental, a pesquisa apresenta a implementação funcional 
de um aplicativo móvel capaz de classificar pimentas em tempo real, integrando 
informações adicionais sobre pungência e usos culinários. 

 
Palavras-chave: Agricultura 4.0; Aumento de dados; Identificação de Pimentas; Visão 
Computacional; YOLOv8. 



 
 
 
 

 

 

ABSTRACT 

 
The growing demand for efficiency and standardization in the agri-food sector has 
accelerated the adoption of Agriculture 4.0 technologies. Within this context, computer 
vision and deep learning have emerged as strategic tools to modernize food supply 
chains. This study evaluated the application of the YOLOv8 architecture for the 
automatic identification of pepper varieties (Capsicum spp.) and developed and 
implemented a mobile application (PWA) that integrates the trained model, providing 
interactive support through a chatbot. To this end, an initial dataset of 1,476 images 
was collected from CEAGESP and public repositories, annotated, and expanded using 
data augmentation techniques, resulting in 3,964 images. The model was trained 
under two scenarios (with and without augmentation) and evaluated using Precision, 
Recall, mAP50, and mAP95 metrics. Results demonstrated that augmentation 
significantly improved model robustness, achieving a mAP50 of 0.694 and reducing 
the risk of overfitting. Beyond experimental outcomes, this research presents the 
functional implementation of a mobile application capable of classifying peppers in 
real-time while providing additional information on pungency and culinary 
applications.. 

 
Keywords: Agriculture 4.0; Computer Vision; Data augmentation; Pepper varieties 
classification; YOLOv8. 



 
 
 
 

 

 

UTILIDADE 

 
 

A utilidade desta dissertação está em disponibilizar um conjunto de dados e um 

modelo de classificação de pimentas, modelo que pode apoiar pesquisas futuras e 

aplicações práticas na Agricultura 4.0. O estudo pode contribuir para maior 

padronização em mercados atacadistas, para redução de perdas e para alinhamento 

às metas dos Objetivos de Desenvolvimento Sustentável. Além disso, esta pesquisa 

se alinha a compromissos globais estabelecidos pela Organização das Nações 

Unidas (ONU) por meio dos Objetivos de Desenvolvimento Sustentável (ODS). A 

proposta de automatizar a identificação de variedades de pimentas contribui 

diretamente para o ODS 2: Fome Zero e Agricultura Sustentável, ao apoiar a 

modernização da produção agrícola com maior eficiência e qualidade. Também está 

relacionada ao ODS 9: Indústria, Inovação e Infraestrutura, por promover a adoção 

de tecnologias digitais emergentes, como visão computacional e inteligência artificial, 

no setor agroalimentar. Finalmente, colabora com o ODS 12: Consumo e Produção 

Responsáveis, ao fortalecer mecanismos de rastreabilidade e reduzir perdas 

decorrentes de falhas humanas na classificação de produtos (ONU, 2015). 
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CAPÍTULO I 
 

 
1 CONSIDERAÇÕES INICIAIS 

A agricultura desempenha papel estratégico na economia nacional e 

internacional; detaca-se como um dos setores mais competitivos do país. De acordo 

com a FAO (2024), no setor dos condimentos, para exemplo, a produção de pimentas 

(Capsicum spp.) alcançou mais de 812 mil toneladas globalmente em 2022, e o Brasil 

é o responsável por aproximadamente 128 mil toneladas do produto. 

Nos últimos anos, a pressão por aumento de produtividade, por redução de custos 

e por adoção de práticas mais sustentáveis tem intensificado a busca por soluções 

inovadoras, em consonância com os Objetivos de Desenvolvimento Sustentável 

(ODS) estabelecidos pela ONU (2015). Nesse contexto, a Agricultura 4.0 desponta 

como paradigma que integra tecnologias digitais, como internet das coisas (IoT), 

inteligência artificial (IA) e big data, o que amplia o alcance da Indústria 4.0 para os 

sistemas agroalimentares (TIAN et al., 2020; JAVAID et al., 2022). 

Entre as tecnologias emergentes, a visão computacional baseada em inteligência 

artificial tem se consolidado como uma ferramenta estratégica para a agricultura, ao 

possibilitar a automatização de tarefas tradicionalmente dependentes de mão de obra 

intensiva. Estudos recentes apresentam a aplicação de técnicas de visão 

computacional com aprendizado profundo em diferentes contextos agrícolas, com 

evidência de redução de erros associados ao trabalho manual e de aumento da 

consistência nos resultados. Por exemplo, Dhanya (2022)  apresentou abordagens 

profundas que automatizam operações agrícolas com alta precisão, enquanto Taneja 

et al. (2023) destacaram como a inteligência artificial melhora a eficiência, reduz o 

desperdício e fortalece a qualidade no setor agroalimentar. 

No caso das pimentas, a elevada diversidade morfológica entre variedades, 

somada ao grande volume comercializado em centrais atacadistas, como a 

CEAGESP, torna a classificação manual especialmente vulnerável a inconsistências, 

fato que reforça a necessidade de soluções tecnológicas inovadoras. 

1.1 Introdução 

Esta pesquisa insere-se no contexto da Agricultura 4.0, marcada pela integração 

de tecnologias digitais e inteligência artificial ao setor agroalimentar. Para manter o 
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foco da Introdução e evitar redundâncias, o aprofundamento conceitual e histórico 

sobre Agricultura 4.0, visão computacional e a evolução dos detectores de objetos, 

com a inclusão da família YOLO, encontra-se detalhado no Capítulo II. Em termos de 

relevância social, o trabalho dialoga diretamente com os Objetivos de 

Desenvolvimento Sustentável, em especial o ODS 2, o ODS 9 e o ODS 12, ao 

promover inovação tecnológica, eficiência produtiva e padronização de processos. 

. 

1.2 Justificativa 

 A aplicação de técnicas de visão computacional na agricultura não se restringe 

à identificação de variedades de pimentas. Diversos estudos têm explorado o 

potencial das CNNs em tarefas como classificação de sementes (KURTULMUŞ, 

ALIBAŞ e KAVDIR, 2016), detecção de doenças em folhas (ZENG et al., 2021) e 

sistemas inteligentes de classificação em linhas de produção (MOHI-ALDEN et al., 

2022). Esses avanços reforçam a aplicabilidade do aprendizado profundo para 

resolver gargalos de eficiência e qualidade na agricultura de precisão. 

Nesse sentido, o desenvolvimento de um protótipo de aplicativo móvel que 

integre o modelo treinado amplia a relevância prática da investigação, pois permite a 

aplicação direta em campo e em ambientes comerciais. Essa proposta também se 

alinha à Engenharia de Produção, ao contribuir para processos de padronização, 

redução de falhas humanas e otimização de cadeias agroalimentares intensivas em 

mão de obra (KAMILARIS e PRENAFETA-BOLDÚ, 2018). 

Por fim, embora a literatura recente evidencie avanços em visão computacional 

aplicada à agricultura, observa-se escassez de estudos dedicados especificamente à 

classificação automática de variedades de Capsicum spp. em ambientes comerciais 

de larga escala, como a CEAGESP. Essa lacuna fundamenta o presente trabalho, 

que busca a preencher com a aplicação do YOLOv8, associada ao desenvolvimento 

de um protótipo de aplicativo móvel. 

Diante disso, surge a questão que norteia esta pesquisa: Como aplicar e avaliar 

a arquitetura YOLOv8 na identificação  automática de  variedades  de Capsicum spp. 
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em ambientes comerciais  de  alta complexidade e integrá-la a um protótipo de 

aplicativo móvel voltado ao uso prático? 

1.3 Objetivos 

 
1.3.1 Objetivo Geral 

Avaliar a aplicabilidade da arquitetura YOLOv8 na identificação automática de 

variedades de pimentas e desenvolver um aplicativo móvel que integre o modelo 

treinado, com a permissão de seu uso prático em tempo real. 

1.3.2 Objetivos Específicos 

A. Construir e organizar um dataset de imagens de variedades de 

pimentas coletadas na CEAGESP e complementadas com bases abertas. 

B. Avaliar o desempenho da arquitetura YOLOv8 em cenários com e sem 

data augmentation, com a consideração de métricas, como Box 

Precision, Recall, mAP50 e mAP95. 

C. Desenvolver e validar um protótipo de aplicativo móvel que integre o 

modelo YOLOv8, com classificação em tempo real e informações 

adicionais por meio de um chatbot. 

1.4 Metodologia Resumida 

Esta pesquisa adota uma abordagem aplicada e experimental, voltada à 

avaliação de técnicas de visão computacional aplicadas à agricultura, 

especificamente à classificação automática de variedades de Capsicum spp.. O 

estudo envolve três etapas principais: a construção de um dataset de imagens, a 

avaliação experimental da arquitetura YOLOv8 em diferentes cenários de treinamento 

e o desenvolvimento de um protótipo de aplicativo móvel. A opção por detalhar 

minuciosamente cada etapa metodológica encontra respaldo em Gil (2018), que 

postula que a clareza dos procedimentos é fundamental para contibuir com a 

replicabilidade do estudo, um pilar da pesquisa científica. 

1.5 Organização estrutural da pesquisa 

A dissertação está organizada em cinco capítulos. O Capítulo 1 apresenta a 

contextualização do tema, a justificativa, os objetivos e uma metodologia resumida. O 
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Capítulo 2 reúne o referencial teórico sobre Agricultura 4.0, visão computacional, 

aprendizado profundo, redes neurais convolucionais e a evolução da família YOLO, 

além de abordar as características das pimentas e os desafios da classificação 

automática. O Capítulo 3 descreve os procedimentos de revisão de literatura e de 

coleta de dados que fundamentam a pesquisa. Conforme ilustrado na Figura 1, o 

Capítulo 4 apresenta os resultados parciais e a discussão. Ele abrange a 

disponibilização do dataset (objetivo específico A), a aplicação e a avaliação 

experimental do modelo YOLOv8 (objetivo específico B) e o desenvolvimento do 

protótipo de aplicativo móvel (objetivo específico C). O artigo científico que detalha 

parte desses resultados encontra-se integralmente apresentado no Anexo A. O 

Capítulo 5 apresenta as conclusões parciais. 

Figura 1- Relação entre objetivos específicos e resultados da pesquisa 

 

 
Fonte: A autora (2025). 
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CAPÍTULO II 
 

 
2 REFERENCIAL TEÓRICO 

 
2.1 Agricultura 4.0 e contexto global 

No setor agroalimentar, a Agricultura 4.0 apresenta-se como vetor estratégico 

para a modernização das cadeias de suprimento, o que permite o uso de ferramentas 

como internet das coisas (IoT), inteligência artificial (IA), sensores inteligentes e 

análise em tempo real para apoiar a tomada de decisão (SUBEESH e MEHTA, 2021). 

Essas tecnologias possibilitam maior rastreabilidade, redução de perdas e otimização 

no uso de recursos naturais; alinham-se às diretrizes globais de sustentabilidade 

(OLIVEIRA e SILVA, 2023). 

A convergência entre a Indústria 4.0 e os sistemas agroalimentares ampliou a 

consolidação do termo AgriFood, que enfatiza a transformação digital das cadeias 

agroalimentares em toda a sua extensão, da produção agrícola ao processamento, 

da distribuição ao consumo final. Essa perspectiva destaca o papel das tecnologias 

digitais e verdes como elementos essenciais para acelerar o cumprimento dos 

Objetivos de Desenvolvimento Sustentável (ODS), ao promover práticas agrícolas 

mais resilientes, eficientes e ambientalmente responsáveis (LEZOCHE et al., 2020; 

HASSOUN et al., 2022). 

O Brasil, enquanto uma das maiores potências agroalimentares globais, 

desempenha papel central nessa transformação. A adoção de soluções digitais 

apresenta potencial significativo de impacto econômico e social, ao se considerar a 

extensão territorial e a diversidade de cultivos do país (EMBRAPA, 2020). Nesse 

contexto, mercados atacadistas, como a Companhia de Entrepostos e Armazéns 

Gerais de São Paulo (CEAGESP), assumem papel estratégico, dado o volume e a 

diversidade de hortifrutigranjeiros movimentados. A classificação e a padronização de 

produtos nesses entrepostos configuram um gargalo logístico que pode ser mitigado 

pela aplicação de tecnologias da Agricultura 4.0. 

Assim, a Agricultura 4.0 e, em sentido ampliado, o conceito de Agri-Food 4.0, 

devem ser compreendidos não apenas como instrumentos de ganho de 

produtividade,  mas também como vetores de sustentabilidade, inovação e 
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competitividade. Ao integrar inteligência artificial, visão computacional e sistemas 

móveis, tais iniciativas contribuem para a eficiência operacional e para a 

transformação das cadeias agroalimentares em direção a modelos mais sustentáveis 

e inovadores. 

2.2 Visão computacional na Agricultura 

A visão computacional (VC) constitui um campo da inteligência artificial voltado 

para a interpretação automatizada de imagens e vídeos digitais, com o objetivo de 

extrair informações relevantes para processos de tomada de decisão. Nos últimos 

anos, avanços em capacidade computacional e algoritmos de aprendizado profundo 

possibilitaram a aplicação da VC em contextos complexos e isto supera limitações de 

métodos tradicionais baseados em extração manual de atributos (WANG e KANG, 

2025). 

A ascensão da Agricultura 4.0 é intrinsecamente ligada aos avanços em 

inteligência artificial, notadamente no campo da VC. Esta disciplina consolidou-se 

como um pilar tecnológico para a automação e a otimização de processos agrícolas, 

o que permite que sistemas computacionais interpretem e extraiam significado de 

dados visuais para a execução de tarefas com elevada precisão. Revisões recentes 

destacam a diversidade de aplicações; incluem identificação de doenças em plantas, 

classificação de frutos e sementes, detecção de plantas daninhas e estimativa de 

produtividade (CAO, SUN e BAO, 2025). 

A manutenção de elevada precisão e velocidade em sistemas de detecção 

aplicados a ambientes agrícolas complexos constitui um importante eixo de 

investigação. Nesse contexto, Li et al. (2021) propuseram uma versão aprimorada do 

modelo YOLOv4-tiny para a detecção em tempo real de pimentas verdes, fato que 

busca mitigar problemas decorrentes de oclusões severas por galhos e folhas, bem 

como da significativa variação de escala dos alvos. O modelo aprimorado incorporou 

predição em múltiplas escalas e um mecanismo híbrido de atenção e isto alcançou 

desempenho expressivo, com 95,11% de precisão média, o que indica adequação 

para implementação embarcada em sistemas robóticos agrícolas. 

No campo do diagnóstico de fitopatologias, definido como o estudo de doenças 

que comprometem o ciclo biológico das plantas, Bezabh et al. (2023) indicaram o 

modelo CPD-CCNN, uma rede convolucional concatenada que se deriva das 
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arquiteturas VGG16 e AlexNet. O objetivo consistiu na classificação de doenças que 

afetam plantas de pimenta, entre elas ferrugem comum, mancha foliar e podridão do 

fruto, com a superação da limitação de abordagens anteriores centradas em 

classificações binárias. O modelo alcançou precisão de 95,82 por cento. 

Por sua vez, Zeng et al. (2021) desenvolveram um modelo de deep learning 

baseado em redes neurais convolucionais (CNNs) para a detecção de doenças em 

folhas de pimenta. O estudo utilizou um conjunto de dados que contém 2.478 imagens 

e aplicou técnicas de transferência de aprendizado para aprimorar a precisão 

diagnóstica em condições reais de cultivo. O modelo atingiu 99,55% de acurácia na 

identificação de folhas sadias e doentes, o que demonstra sua aplicabilidade prática 

para detecção precoce de doenças na agricultura 

Embora estudos recentes ampliem o uso de visão computacional na cadeia 

produtiva da pimenta, trabalhos anteriores já indicavam a aplicabilidade dessas 

técnicas. Kurtulmuş et al. (2016) analisaram sementes de pimenta por meio de 

extração de características de cor, forma e textura e classificaram os dados com um 

perceptron multicamadas. A acurácia obtida foi de 84,94 por cento, o que indica a 

aplicabilidade de métodos de aprendizado profundo desde etapas iniciais da 

produção. 

Pesquisas também sugerem que a integração da VC com redes neurais 

convolucionais e algoritmos de detecção de objetos potencializa a robustez das 

análises e permite o seu uso em ambientes não controlados. Upadhyay (2025), em 

uma revisão abrangente, aponta que técnicas de deep learning aplicadas à detecção 

de doenças em plantas, com imagens RGB, multiespectrais e hiper espectrais, 

oferecem resultados de alta precisão, com potencial para diagnósticos precoces e 

não destrutivos. Essa característica é particularmente relevante para cadeias de 

produção agrícola que demandam rapidez e confiabilidade na tomada de decisão. 

Apesar dos avanços, a adoção da VC na agricultura enfrenta desafios 

significativos. Entre eles destacam-se a necessidade de grandes conjuntos de dados 

anotados, a variabilidade de condições ambientais (iluminação, ângulo de captura, 

clima) e a elevada demanda computacional de alguns modelos, o que pode dificultar 

a implementação em dispositivos móveis e sistemas distribuídos (MIN, 2025). Para 

mitigar essas limitações, a literatura recente aponta para soluções, como aprendizado 
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auto supervisionado, modelos leves otimizados para edge computing e a fusão 

multimodal de dados provenientes de diferentes sensores (SORNAPUDI e SINGH, 

2024). 

Portanto, a visão computacional na agricultura representa uma das áreas mais 

promissoras da Agricultura 4.0, ao possibilitar ganhos em eficiência, sustentabilidade 

e padronização de processos, ainda que dependa de contínuos avanços técnicos e 

da superação de barreiras operacionais para sua plena integração em ambientes de 

produção. 

2.3 Aprendizado Profundo e Redes Neurais Convolucionais (CNNs) 

O aprendizado profundo, ou deep learning, consolidou-se como paradigma 

dominante nas aplicações de VC, o que viabiliza a extração automatizada de 

características visuais sem depender de processamento manual por parte do 

pesquisador (EL SAKKA, 2025). 

Entre as arquiteturas de deep learning, as redes neurais convolucionais (CNNs) 

destacam-se por sua capacidade de aprender hierarquias espaciais complexas, por 

meio de operações de convolução, ativação e redução de dimensionalidade. Elas 

permitem reconhecer padrões visuais, desde bordas até estruturas sintáticas de alto 

nível, diretamente em dados de imagem (LEITE, 2024). 

No âmbito agrícola, as CNNs têm sido aplicadas com sucesso em tarefas como 

detecção de doenças em plantas, identificação de pragas, classificação de estágios 

de crescimento e monitoramento de colheitas. El Sakka (2025) aponta que modelos 

baseados em deep learning superam métodos tradicionais como k-means e Máquina 

de Vetores de Suporte (SVM) em diversos cenários agroalimentares, especialmente 

quando se busca robustez e inovação em condições visuais adversas. 

Em atividades, como a identificação de estresse hídrico ou sanidade vegetal, 

CNNs têm se mostrado eficazes ao processar imagens obtidas via drones, sensores 

remotos e câmeras multiespectrais. As redes aceleram diagnósticos e favorecem 

decisões em tempo real (KESKES, 2025). No entanto, a adoção dessas redes no 

campo ainda enfrenta limitações relevantes, uma vez que a coleta e a anotação de 

grandes bases de dados demandam alto esforço e conhecimento especializado. Além 

disso, os modelos costumam ser computacionalmente intensivos, o que restringe sua 

execução em dispositivos de borda (edge computing). A revisão de Hossen (2025) 
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sobre transferência de aprendizado destaca que o uso de modelos pré-treinados 

reduz esses obstáculos e viabiliza seu emprego em aplicações com menos dados e 

infraestrutura limitada. 

Em síntese, as CNNs representam a espinha dorsal do deep learning aplicado 

à agroecologia e são decisivas  para conectar  a teoria de IA  à prática da Agricultura 

4.0. No entanto, seu uso exige mecanismos de adaptação (como transferência de 

aprendizado e modelos leves), sobretudo em contextos com dados escassos ou 

recursos computacionais limitados. 

2.4 Modelos de Detecção de Objetos 

Os modelos de detecção de objetos representam um avanço significativo da 

visão computacional, pois combinam tarefas de localização e classificação em 

imagens digitais. Essa capacidade é fundamental em contextos agrícolas, em que se 

busca identificar não apenas a presença de um fruto, folha ou praga, mas também 

sua posição e sua quantidade em uma cena (ZHANG et al., 2021). 

Historicamente, os detectores de objetos foram divididos em duas categorias 

principais. O primeiro grupo inclui modelos two-stage, como o Faster R-CNN, que, 

primeiro, gera regiões de interesse; depois, realiza a classificação e apresenta 

elevado nível de precisão, mas com custo computacional mais alto (REN et al., 2015). 

O segundo grupo engloba os modelos one-stage, como YOLO, SSD, RetinaNet e 

EfficientDet, que realizam detecção e classificação em uma única etapa, o que 

proporciona maior velocidade de inferência com desempenho competitivo (TAN e LE, 

2020). 

No setor agrícola, os modelos de dois estágios (two-stage), como o Faster R- 

CNN, têm sido aplicados com sucesso no diagnóstico de doenças e na identificação 

de pragas e o fato demonstra alta precisão para alvos pequenos e com características 

complexas. Já os modelos de um estágio (one-stage), como o YOLO, destacam-se 

por sua vantagem em velocidade, o que viabiliza o processamento rápido na detecção 

de doenças e pragas. A eficácia desses modelos para aplicações em cenários do 

mundo real e em tempo real é evidenciada pela integração em aplicativos para 

plataformas móveis. Ela atinge taxas de quadros por segundo (FPS) adequadas para 

diagnósticos preliminares. A escolha entre uma arquitetura one-stage e two-stage 

depende do equilíbrio necessário entre precisão, tempo de resposta e recursos 



 

 
 
 

25 
 

 

computacionais disponíveis (LI et al., 2023). 

A literatura recente também aponta para uma tendência de integração entre 

eficiência e escalabilidade. Modelos como o EfficientDet alcançam bom desempenho 

em cenários de uso agrícola com recursos limitados, enquanto o RetinaNet, com sua 

função de perda focal loss, tem mostrado robustez em datasets desbalanceados, 

comuns no agro (TAN e LE, 2020; CAO, SUN e BAO, 2025). Essa adaptabilidade é 

crucial para aplicações em ambientes reais, onde a coleta de dados enfrenta 

variações de iluminação, oclusões e ângulos não controlados. 

Essas inovações confirmam a tendência de busca por detectores que combinem 

alta precisão com eficiência computacional, essenciais para ambientes 

agroalimentares de alta variabilidade. Tais avanços oferecem base técnica para 

compreendermos a evolução posterior dos detectores YOLO e sua aplicabilidade no 

contexto das pimentas. 

2.5 Evolução da Arquitetura YOLO 

A arquitetura YOLO (You Only Look Once), proposta por Redmon et al. em 2016, 

foi estruturada como um método de detecção de objetos em que a imagem é dividida 

em uma grade S×S, e o modelo prevê simultaneamente as bounding boxes, que são 

retângulos que delimitam a posição dos objetos na cena, e as probabilidades de 

classe em uma única avaliação da rede, e isto caracteriza um processo de detecção 

de etapa única (REDMON et al., 2016). Em contraste com abordagens two-stage, 

como o Faster R-CNN, o YOLO executa o processo em um único passo; ele reduz o 

tempo de inferência e possibilita o uso em sistemas com restrições computacionais. 

Desde sua formulação, a arquitetura YOLO passou por versões sucessivas voltadas 

ao aprimoramento da precisão e da eficiência. 

O YOLOv1, apresentado em 2016, introduziu o paradigma da detecção em 

tempo real, ainda com limitações em objetos pequenos (REDMON et al., 2016). Já o 

YOLOv2 (YOLO9000), lançado em 2017, incorporou o uso de anchor boxes e a 

capacidade de detectar milhares de categorias simultaneamente (REDMON e 

FARHADI, 2017). Em 2018, foi lançado o YOLOv3 que trouxe a backbone Darknet- 

53 e que ampliou a profundidade da rede e a robustez em diferentes escalas 

(REDMON e FARHADI, 2018). 

Segundo Bochkovskiy et al. (2020), o YOLOv4 introduziu as estratégias bag of 
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freebies e bag of specials, que otimizaram o desempenho sem aumento significativo 

do custo computacional. No mesmo ano, a Ultralytics lançou o YOLOv5, amplamente 

adotado pela comunidade científica por sua facilidade de implementação em PyTorch 

e ampla documentação. O YOLOv6, lançado em 2022 pela Meituan, foi voltado a 

aplicações industriais, com otimizações para dispositivos de borda e maior velocidade 

de inferência, e mantém precisão competitiva (LI et al., 2022). 

O YOLOv7 apresentou o módulo E-ELAN, que aprimorou a convergência e a 

precisão e consolidou-se como o detector mais rápido e preciso de sua geração 

(WANG et al. 2022). Publicado em 2023 pela Ultralytics, o YOLOv8 reformulou a 

arquitetura com melhorias no head de detecção, além de introduzir modelos mais 

leves e integrados a fluxos de implantação em dispositivos móveis. 

O YOLOv9, em 2024, apresentou o conceito de Programmable Gradient 

Information (PGI) e a espinha dorsal GELAN e alcançou melhor aproveitamento de 

características em diferentes escalas (WANG, YEH e LIAO, 2024). O YOLOv10, em 

2024, propôs um desenho livre de NMS com atribuições duais consistentes; obteve 

maior eficiência energética e latências menores; é adequado a aplicações em edge 

computing (WANG et al., 2024). 

No setor agrícola, Khan, Shen e Liu (2025) reforçam que arquiteturas YOLO são 

particularmente relevantes para detecção de pragas, frutos e doenças devido à 

necessidade de diagnósticos rápidos e escaláveis. Em complementação, 

Venkateswara e Padmanabhan (2025) mostraram que o YOLOv10 atinge taxas de 

quadros por segundo elevadas e desempenho robusto em tarefas agroalimentares 

complexas. Ele supera alternativas, como EfficientDet e RetinaNet, em cenários de 

campo. 

Finalmente, em 2024, a Ultralytics lançou o YOLOv11, a versão mais recente até 

o momento, que foca no equilíbrio entre precisão e velocidade. A atualização melhora 

a eficiência da arquitetura e a integração para implantação em dispositivos móveis e 

na nuvem. Segundo a empresa, o YOLOv11 aprimora o treinamento, o desempenho 

em múltiplos datasets e a escalabilidade para aplicações do mundo real 

(ULTRALYTICS, 2024). 

Cabe destacar que várias versões do YOLO foram inicialmente divulgadas em 

formato de preprint, como ocorre com o YOLOv4, YOLOv6, YOLOv7, YOLOv9 e 
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YOLOv10. Embora esses trabalhos não tenham passado pelo processo tradicional de 

revisão por pares, sua relevância científica está consolidada por sua ampla adoção 

na comunidade acadêmica, pelo elevado número de citações e por serem 

frequentemente analisados em revisões sistemáticas indexadas em Scopus e Web of 

Science (KHAN, SHEN e LIU, 2025; DALAL e MITTAL, 2025). Dessa forma, o uso de 

preprints neste referencial teórico reflete a própria dinâmica de disseminação da 

pesquisa em visão computacional, em que muitas contribuições fundamentais são 

divulgadas primeiramente em repositórios de acesso aberto. 

A trajetória do YOLO, do v1 ao v11, deve ser entendida como um exemplo de 

avanço científico incremental e colaborativo, no qual cada versão incorpora melhorias 

arquiteturais que viabilizam novas aplicações. Esse movimento consolida a 

arquitetura como uma das mais adequadas para cenários agroalimentares 

complexos, como a classificação automática de variedades de Capsicum spp. na 

CEAGESP, onde robustez e processamento em tempo real são requisitos 

fundamentais. 

2.6 Pimentas do gênero Capsicum 

O gênero Capsicum L. (Solanaceae) reúne espécies de ampla relevância 

econômica, gastronômica e científica. É originário das Américas, com centro de 

diversidade nos Andes e distribuição que se estende do sul dos Estados Unidos até 

a Argentina e o Brasil (BARBOZA et al., 2022). Atualmente, são reconhecidas 43 

espécies, das quais cinco foram domesticadas e alcançaram cultivo em escala global: 

C. annuum, C. chinense, C. frutescens, C. baccatum e C. pubescens (BARBOZA et 

al., 2022). 

As pimentas são valorizadas não apenas por seu papel na alimentação, mas 

também por atributos nutricionais e funcionais. Os frutos apresentam elevado teor de 

compostos bioativos, entre os quais se destacam os capsaicinóides, responsáveis 

pela pungência característica (BASITH et al., 2016). Dentre esses, a capsaicina e a 

dihidrocapsaicina respondem por até 90% da ardência e atuam como principais 

marcadores químicos de intensidade sensorial (BASITH et al., 2016). A intensidade 

da pungência é mensurada pela Escala de Scoville, proposta em 1912, que varia de 

0 SHU (pimentões doces) a 16 milhões SHU (capsaicina pura) (SCOVILLE, 1912). 

Além da utilização como condimento e conservante natural, estudos recentes 
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destacam o potencial farmacológico e industrial da capsaicina. Entre suas atividades 

biológicas estão efeitos analgésicos, anti-inflamatórios, antioxidantes e 

anticancerígenos, com aplicações no tratamento de dores neuropáticas, distúrbios 

metabólicos e inflamações crônicas (BASITH et al., 2016). O uso ornamental de 

algumas espécies e o emprego de derivados de pimentas em formulações industriais, 

repelentes e produtos de defesa pessoal também ampliam o espectro de aplicações 

(BARBOZA et al., 2022). 

No contexto brasileiro, as pimentas apresentam relevância tanto pelo consumo 

interno, quanto pela presença em cadeias de distribuição atacadista, como a 

Companhia de Entrepostos e Armazéns Gerais de São Paulo (CEAGESP), onde o 

grande volume de comercialização evidencia a importância socioeconômica do 

gênero (BARBOZA et al., 2022). Entretanto, os processos tradicionais de 

classificação e padronização, baseados em inspeção visual, ainda constituem um 

gargalo logístico, marcado pela subjetividade e pela suscetibilidade a erros (CRUZ- 

DOMÍNGUEZ et al., 2021). 

Pesquisas recentes indicam que ferramentas de visão computacional e 

inteligência artificial podem superar essas limitações e proporcionar maior precisão e 

escalabilidade na identificação varietal. Cruz-Domínguez et al. (2021) desenvolveram 

um sistema baseado em redes neurais artificiais para classificação de pimentas secas. 

Obtiveram acurácia superior a 82% na diferenciação entre classes de qualidade, o 

que evidencia o potencial de tecnologias automatizadas para modernizar a cadeia 

produtiva. 

2.7 Desafios na Classificação Automática de Variedades de Capsicum 

A classificação automática de variedades de Capsicum spp. enfrenta desafios 

específicos que decorrem tanto das características intrínsecas da cultura, quanto das 

limitações tecnológicas ainda presentes nas abordagens atuais de visão 

computacional. Diferentemente de outras hortaliças ou frutos de maior variação 

morfológica, as pimentas apresentam elevado grau de similaridade visual entre 

variedades, o que dificulta a distinção por algoritmos de aprendizado profundo 

(BARBOZA et al., 2022). 

Outro desafio relevante refere-se às condições ambientais sob as quais as 

imagens são capturadas. Em ambientes comerciais como a CEAGESP, a iluminação 
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artificial irregular, a presença de sombras, reflexos e a sobreposição de frutos no 

mesmo espaço reduzem a qualidade das imagens e prejudicam a generalização dos 

modelos. Estudos recentes apontam que a variabilidade de iluminação e ângulo de 

captura pode impactar significativamente a precisão de sistemas baseados em CNNs 

e YOLO (KHAN, SHEN e LIU, 2025). 

A disponibilidade e a qualidade de datasets também constituem barreira crítica. 

Muitos estudos em visão computacional aplicada ao agro utilizam bases de dados 

limitadas, com amostras desbalanceadas entre classes, o que compromete a 

robustez e aumenta o risco de overfitting (DALAL e MITTAL, 2025). A escassez de 

imagens rotuladas de forma padronizada para diferentes variedades de pimentas 

reforça a necessidade de estratégias como data augmentation e transfer learning para 

compensar a falta de dados em ambientes reais (PADILLA et al., 2021). 

Outro aspecto a ser considerado é o custo computacional das arquiteturas mais 

avançadas. Embora versões recentes da família YOLO tenham sido otimizadas para 

uso em dispositivos móveis e de borda, sua aplicação em mercados atacadistas 

demanda processamento rápido em tempo real, o que exige balancear a escolha de 

modelos mais leves com a manutenção da precisão necessária para a classificação 

varietal (VENKATESWARA e PADMANABHAN, 2025). 

Além disso, a aceitação prática da tecnologia depende da integração com 

ferramentas acessíveis e compatíveis com o cotidiano de produtores e comerciantes. 

Sistemas complexos ou que exigem infraestrutura computacional avançada tendem 

a enfrentar barreiras de adoção em contextos como a agricultura familiar e os 

mercados regionais. Esse desafio é enfatizado por Porciello et al. (2022), que 

apontam que a agricultura digital depende da capacidade dos sistemas de 

compartilhar dados. Muitas regiões, entretanto, ainda apresentam limitações 

estruturais básicas, como acesso instável à eletricidade ou a redes de telefonia móvel, 

além da ausência de arquiteturas adequadas para o compartilhamento de dados. 

Nesse cenário, soluções que conciliem precisão técnica, simplicidade operacional e 

baixo custo tornam-se essenciais para sua efetiva implementação. 

Esses desafios evidenciam uma lacuna científica e prática ainda pouco 

explorada. Embora os modelos da família YOLO tenham alcançado avanços 

expressivos em tarefas de detecção de objetos em diferentes domínios, sua aplicação 
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direcionada à classificação automática de variedades de Capsicum spp. em 

ambientes comerciais de alta complexidade, como a CEAGESP, permanece limitada. 

A ausência de datasets específicos, as dificuldades de generalização em condições 

reais de mercado e a escassez de soluções integradas em plataformas acessíveis 

reforçam a necessidade de estudos   que aliem robustez técnica e aplicabilidade 

prática. Nesse contexto, a presente dissertação busca preencher essa lacuna ao 

avaliar o desempenho do YOLOv8 na identificação varietal de pimentas e ao propor 

sua integração em um protótipo de aplicativo móvel voltado a usuários do setor 

agroalimentar.  

A escolha do YOLOv8 como modelo base deve-se a um conjunto de fatores 

técnicos e práticos. Em comparação com versões anteriores da família YOLO, o 

YOLOv8 apresenta melhorias arquiteturais que resultam em maior precisão e maior 

estabilidade de treinamento, o que, ao mesmo tempo, mantém estrutura mais leve e 

escalável (ULTRALYTICS, 2023). Na família, a versão “m” (medium) representa um 

equilíbrio entre desempenho e custo computacional: é mais robusta que as versões 

“n” (nano) e “s” (small), mas ainda viável para ser executada em dispositivos móveis 

e de borda, o que a torna especialmente adequada para o desenvolvimento  do 

protótipo  de aplicativo proposto nesta  pesquisa. Essa decisão metodológica está 

alinhada ao objetivo de oferecer uma solução prática e acessível, que combine rigor 

científico com aplicabilidade em ambientes comerciais como a CEAGESP. 

É importante destacar que versões posteriores da família YOLO, como o 

YOLOv9, YOLOv10 e YOLOv11, foram lançadas ao longo de 2024, quando esta 

pesquisa já estava em andamento. Embora representem avanços relevantes, essas 

arquiteturas ainda careciam de validações consolidadas em cenários agrícolas, o que 

poderia comprometer a reprodutibilidade no cronograma da pesquisa. Dessa forma, 

o YOLOv8 foi selecionado como a alternativa mais estável e viável, pois garante 

equilíbrio entre inovação, eficiência computacional e aplicabilidade prática. 
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CAPÍTULO III 
 

 
3 METODOLOGIA 

 
3.1 Caracterização da Pesquisa 

De acordo com Gil (2018) e Yin (2015), esta pesquisa pode ser caracterizada 

como: 

 
Natureza aplicada, pois busca propor uma solução prática para o problema da 

identificação de variedades de pimentas, por meio do uso de visão computacional e 

do desenvolvimento de um aplicativo. 

Abordagem quantitativa, já que envolve a mensuração do desempenho do 

modelo YOLOv8 por métricas objetivas recall e precisão média (mAP); e qualitativa 

em caráter complementar, ao discutir a aplicabilidade prática do protótipo do 

aplicativo. 

Objetivos exploratórios, ao investigar o potencial de aplicação da arquitetura 

YOLOv8 em um novo contexto agrícola;  explicativos, ao analisar os resultados 

obtidos e suas limitações. 

Procedimento técnico experimental, por empregar treinamento e testes de 

rede neural em diferentes cenários de dataset (com e sem data augmentation), e de 

desenvolvimento tecnológico, por englobar a elaboração de um protótipo de aplicativo 

móvel que integra o modelo treinado. 

3.2 Protocolo de Revisão de Literatura 

A revisão bibliográfica foi conduzida de forma sistemática para garantir uma 

base teórica sólida e atualizada. Foram consultadas as bases Scopus, Web of 

Science e Google Scholar, com a priorização de artigos publicados entre 2019 e 2024: 

Critérios de inclusão: estudos aplicados de visão computacional na 

agricultura, uso de CNNs e evolução da família YOLO. 

Critérios de exclusão: trabalhos não indexados em bases de alta 

credibilidade ou com escopo divergente. 
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Relevância científica: a seleção priorizou artigos publicados em periódicos de 

alto impacto, predominantemente classificados em Q1 e Q2 nas bases Scopus/Web 

of Science, e nos estratos P1 a P3 do Qualis CAPES (2022), que correspondem aos 

níveis mais elevados de qualidade da produção científica nacional. 

3.3 Design Science Research (DSR) 

A presente pesquisa adota como orientação metodológica o Design Science 

Research (DSR), abordagem que vem sendo discutida e atualizada nos últimos anos, 

especialmente no contexto de pesquisas aplicadas que buscam gerar 

simultaneamente conhecimento científico e soluções práticas (VOM BROCKE, 

HEVNER e MAEDCHE, 2020). O DSR estrutura-se em fases iterativas que incluem a 

identificação do problema, a definição dos objetivos, o design e desenvolvimento do 

artefato, sua demonstração e avaliação, e a comunicação dos resultados, com a 

garantia de rigor científico e relevância prática. 

No campo das ciências aplicadas, a adoção do DSR tem se mostrado 

especialmente útil para pesquisas que envolvem inovações tecnológicas e 

complexidade de implementação. Prost (2021) destaca o potencial do DSR para 

revitalizar práticas em ciências agrícolas, ao alinhar metodologias científicas com a 

construção de artefatos capazes de enfrentar problemas reais. Da mesma forma, 

Tuunanen et al. (2025) propõem que, em cenários de alta complexidade, como 

aqueles que envolvem múltiplos atores e recursos limitados, a aplicação do DSR deve 

considerar níveis de design, para assegurar maior clareza e coerência entre etapas. 

No contexto desta dissertação, as fases do DSR foram operacionalizadas da 

seguinte forma: 

3.3.1 Fase 1 – Identificação do problema e definição dos objetivos 

O problema central foi definido a partir da dificuldade de classificação manual 

de variedades de Capsicum spp. em ambientes de grande escala, como a CEAGESP, 

o que gera inconsistências, perdas e subjetividade no processo. Dessa lacuna 

derivaram os objetivos da pesquisa: (i) desenvolver um dataset específico de 

pimentas, (ii) treinar e avaliar o modelo YOLOv8 em cenários distintos e (iii) propor 

um protótipo de aplicativo móvel para aplicação prática. 
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3.3.2 Fase 2 – Análise de requisitos 

Nesta Nesta fase, foram definidos os requisitos técnicos, funcionais e 

científicos necessários ao desenvolvimento do artefato. Do ponto de vista técnico e 

científico, estabeleceu-se a necessidade de um dataset com diversidade morfológica 

adequada, a seleção de um modelo de detecção de objetos que apresentasse 

equilíbrio entre acurácia e viabilidade de uso em dispositivos móveis. Foi adotado o 

YOLOv8 e a definição das métricas de avaliação, o que contempla Precisão, Recall, 

mAP50 e mAP95. 

Além desses aspectos, foram definidos os requisitos funcionais que orientam o 

fluxo operacional do protótipo. Conceitualmente, o sistema deverá seguir o seguinte 

processo: 

• Interface do usuário: permitir que o usuário capture uma imagem diretamente 

pela câmera do dispositivo ou carregue uma foto já existente. 

• Processamento: a imagem deverá ser enviada ao modelo YOLOv8 hospedado 

em servidor próprio e acessado por meio de uma API REST. 

• Retorno dos resultados: o sistema deverá exibir a variedade identificada, 

juntamente com informações adicionais pertinentes. 

• Chatbot de apoio: o protótipo deverá incluir um módulo conversacional para 

fornecer informações complementares sobre a pimenta identificada, tais como 

nível de pungência, características botânicas, formas de consumo culinário e 

recomendações de armazenamento, fato que amplia a utilidade do sistema no 

contexto agroalimentar. 

3.3.3 Fase 3 – Design e desenvolvimento do artefato 

Nesta fase foram conduzidas as etapas de coleta de dados (seção 3.4), 

preparação do dataset (seção 3.5), aplicação de técnicas de data augmentation 

(seção 3.6), configuração computacional e procedimentos de treinamento (seções 3.7 

e 3.8). Essas atividades resultaram no desenvolvimento do modelo YOLOv8 treinado 

em dois cenários distintos, com e sem data augmentation. 

3.3.4 Fase 4 – Demonstração 

A demonstração do artefato ocorreu em duas etapas complementares. A 

primeira consistiu na aplicação experimental do modelo YOLOv8 treinado sobre o 
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conjunto de teste, o que permite avaliar seu desempenho em condições controladas. 

A segunda etapa correspondeu à implementação e à integração do modelo em um 

protótipo funcional de aplicativo móvel, desenvolvido a partir dos mockups conceituais 

apresentados na Seção 3.10. Nessa fase, o protótipo foi integrado ao modelo por 

meio de uma API REST, fato que incorporou funcionalidades de captura de imagem, 

classificação automática e chatbot informativo. Concluída essa integração, o 

aplicativo foi disponibilizado à equipe técnica da CEAGESP para validação prática em 

condições reais de uso no ambiente comercial da unidade. 

3.3.5 Fase 5 – Avaliação 

A avaliação inicial concentrou-se nas métricas de desempenho do modelo 

YOLOv8, amplamente reconhecidas na literatura, incluisive em Precisão, Recall, 

mAP50 e mAP95. Em etapa posteror, prevista como continuidade da pesquisa, será 

realizada a avaliação prática do protótipo móvel em ambiente real, com participação 

da equipe parceira da CEAGESP. 

3.3.6 Fase 6 – Comunicação 

Os resultados já obtidos foram comunicados por meio de artigo científico 

publicado na revista Applied Sciences (2025) e estão sistematizados nesta 

dissertação. Após a implementação da versão funcional, o aplicativo foi 

disponibilizado à equipe técnica da CEAGESP, acompanhada de um formulário de 

avaliação que buscou registrar a percepção dos usuários sobre aspectos 

operacionais, clareza da interface e adequação das funcionalidades às rotinas do 

entreposto. Essa ação teve como objetivo comunicar o artefato ao público diretamente 

envolvido na cadeia comercial de pimentas e coletar contribuições que possam 

orientar ajustes futuros. 

A combinação entre a documentação apresentada nesta dissertação e o 

processo de validação junto aos profissionais da CEAGESP permite que o artefato 

seja apresentado de forma transparente e contextualizada, que ofereça subsídios 

para sua análise, seu uso e seus possíveis aprimoramentos em trabalhos posteriores. 

Essa organização metodológica contibui para o alinhamento entre problema, 

objetivos, procedimentos e resultados; ela reforça a replicabilidade da pesquisa e 

atende as recomendações de Gil (2018) quanto à clareza no detalhamento de etapas 

metodológicas. 
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3.4 Coleta de dados 

A coleta de dados foi realizada em duas frentes: 

 
Coleta primária: A coleta de dados foi realizada na CEAGESP, principal centro 

de comercialização hortifrutigranjeira do país. O objetivo foi registrar imagens 

representativas das oito variedades de Capsicum selecionadas, capturando a 

variabilidade visual observada em condições reais de mercado.   

As fotografias foram obtidas diretamente nas bancas. Utilizou-se a iluminação 

natural do ambiente e preservaram-se os elementos característicos do cenário 

comercial, como fundos variados, embalagens, caixas, sombras e diferentes 

disposições dos frutos. Essa estratégia buscou refletir o contexto genuíno de uso do 

sistema, o que permitiu que o modelo fosse treinado com imagens compatíveis com 

aquelas posteriormente encontradas no ambiente de aplicação. 

Foram utilizados três dispositivos para a captura das imagens, com a garantia 

de resolução, textura e profundidade de campo: 

• Samsung Galaxy Tab A8, com câmera traseira de 8 MP; 

• Nikon Coolpix L120, no modo automático, com sensor CCD de 14,1 MP e 

lente com zoom óptico de 21×; 

• iPhone 11, equipado com sistema de câmeras duplas de 12 MP e 

capacidade de gravação em 4K. 

Coleta secundária: Foi feita manualmente por busca on-line em bases 

abertas; o Google Imagens (com filtro de licenças Creative Commons) como fonte 

principal e complementada por coletas no Pixabay. Selecionaram-se arquivos em alta 

resolução (≥ 300 dpi), nos formatos JPEG (.jpg) ou PNG (.png), com diversidade de 

ângulos, iluminação e enquadramentos para ampliar a variabilidade do conjunto. 

Foram selecionadas 1.476 imagens iniciais, distribuídas entre as variedades 

Biquinho, Bode, Chili, Fidalga, Habanero, Jalapeño, Scotch Bonnet e Cambuci, 

representadas no mosaico de exemplos apresentado na Figura 2. 
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Figura 2 - Exemplo de imagens do dataset por classe (8 variedades de pimentas) 
 
 

Fonte: Elaboração própria (2025). 

 

3.5 Preparação do dataset 

A rotulagem das imagens coletadas na etapa anterior foi realizada 

manualmente na plataforma Roboflow. Utilizou-se a ferramenta retangular para 

delimitar cada fruto com uma bounding box aderente às bordas visíveis e, em seguida, 

associou-se a classe correspondente a partir da lista previamente definida. Em cenas 

com múltiplos frutos, cada instância recebeu uma caixa e um rótulo próprios; em 

oclusões parciais, anotou-se a porção visível quando suficiente para identificação, 

conforme Figura 3. Imagens com desfoque severo, exposição inadequada ou 

ambiguidade de classe foram excluídas. Esse procedimento seguiu as orientações 

operacionais do Roboflow para anotação supervisionada com bounding boxes 

(ROBOFLOW, 2023).  
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Figura 3 - Exemplo de anotação com bounding boxes no Roboflow 

Fonte: Elaboração própria (2025). 

 

A padronização do tamanho foi executada no próprio Roboflow, com a 

normalização de todas as imagens para 640 × 640 pixels, em extensão JPG, 

conforme recomendação do YOLOv8 para assegurar uniformidade e eficiência 

computacional (Jocher et al., 2022).  

Na etapa de pré-processamento foi exportado o conjunto de imagens anotadas 

no perfil YOLOv8. O formato de rótulo adotado foi o nativo do YOLO: para cada 

imagem, um arquivo .txt homônimo é criado; cada linha descreve um objeto no padrão 

class x_center y_center width height, com as quatro grandezas geométricas 

normalizadas em [0,1] em relação à largura e à altura da imagem. A lista de classes 

e seus nomes é definida no arquivo data.yaml, que também referencia os caminhos 

das partições train/ val/ test (ULTRALYTICS, 2023; ROBOFLOW, 2023). 

Após a anotação, o dataset inicial, composto por 1.476 imagens, foi dividido 

em 84% para treinamento (1.245 imagens), 14% para validação (201 imagens) e 2% 

para teste (30 imagens). Priorizou-se maximizar exemplos de treino e manter, em 

validação e teste, amostras visualmente diversas (iluminação, ângulos e morfologia). 

A estratégia adotada encontra respaldo nos estudos de Frizzi et al. (2021), os quais 

mostram que, em cenários caracterizados pela escassez de dados, a priorização do 

volume do conjunto de treinamento, aliada a técnicas de data augmentation, atua 

eficazmente na mitigação do overfitting e pressupõe a manutenção da 

representatividade nos subconjuntos de validação e teste. Apesar da adesão a este 

princípio, ressalta-se que a dimensão reduzida do conjunto de teste atual impõe 
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limitações à avaliação definitiva quanto à capacidade de generalização do modelo. 

3.6 Técnicas de data augmentation 

Com o objetivo de aumentar a diversidade do dataset e melhorar a capacidade 

de generalização do modelo YOLOv8, foram aplicadas técnicas de data augmentation 

diretamente na plataforma Roboflow, com a inclusão da rotação aleatória e do 

desfoque gaussiano. Essas transformações resultaram a geração de um novo dataset 

expandido, o que totalizou 3.964 imagens. A Figura 4 apresenta exemplos dessas 

transformações. 

 

Figura 4 - Exemplo de técnicas de data augmentation aplicadas ao dataset 
 
 

 

 
Fonte: Elaboração própria (2025). 

 

 

O uso de data augmentation é amplamente reconhecido na literatura como 

estratégia eficaz para reduzir o risco de overfitting e aumentar a robustez de modelos 

de visão computacional (YILMAZ e KUTBAY, 2024). O overfitting ocorre quando um 

modelo apresenta desempenho elevado no conjunto de treinamento, mas perde 

capacidade de generalização em novos dados, por ter memorizado padrões 

específicos em vez de aprender características representativas (ZHANG et al., 2021). 

No presente estudo, foram utilizados os seguintes parâmetros de transformação: 

Rotação aleatória: variação entre −30° e +30°, o que permite simular diferentes 

ângulos de captura das pimentas; 

 
Desfoque gaussiano (gaussian blur): o desfoque gaussiano foi aplicado com 

kernel 3×3, com produção de um efeito leve, suficiente para simular pequenas 

variações de foco que ocorrem em condições reais de captura de imagens, sem 

comprometer a legibilidade das características visuais das variedades de pimentas. 
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Recorte (cropping): avaliado inicialmente, foi descartado, pois ocasionava a 

perda de características importantes em variedades com frutos menores. 

Essas técnicas ampliaram o dataset inicial, com a garantia de maior diversidade 

visual e de uma base mais robusta para o treinamento do modelo. A Figura 5 sintetiza, 

de forma gráfica, o fluxo de criação do dataset. 

Figura 5 - Fluxograma de preparação do dataset e seu particionamento 

 

 

Fonte: Elaboração própria (2025). 

 

 

 



 

 
 
 

40 
 

 

3.7 Configuração Computacional 

O treinamento foi realizado no Google Colab Pro, serviço hospedado de 

notebooks Jupyter que permite executar Python no navegador com acesso a 

GPUs/TPUs e instalação de bibliotecas por sessão, o que favorece reprodutibilidade, 

baixo custo e rápida disponibilização de hardware acelerado (GPU) para deep 

learning (GOOGLE, 2025a; GOOGLE, 2025b).  

A opção pelo Colab Pro se justifica por (i) acesso sob demanda a GPUs NVIDIA 

(com a inclusão de T4, L4, V100 e A100, conforme plano), com cobrança previsível e 

documentação pública de preços; (ii) ambiente gerenciado, com CUDA e drivers 

compatíveis; (iii) facilidade de compartilhamento do notebook para auditoria do 

experimento (GOOGLE, 2025c).  

No presente estudo, as execuções utilizaram GPU NVIDIA Tesla T4 (16 GB 

GDDR6), adequada a tarefas de treinamento de CNNs graças aos Tensor Cores e ao 

suporte a cálculo multi-precisão (FP32/FP16/INT8), que aumentam a eficiência em 

training/inference (NVIDIA, 2019; NVIDIA, 2024). 

O runtime foi Python 3.10 com PyTorch 2.0 e Ultralytics YOLOv8, instalados no 

próprio Colab via pip, com atenção aos requisitos mínimos do projeto (Python ≥ 3.8; 

PyTorch ≥ 1.8; GPU CUDA-compatível para aceleração) e ao guia de instalação/uso 

do Ultralytics (ULTRALYTICS, 2023a; ULTRALYTICS, 2023b; PYTORCH, 2025). As 

execuções iniciavam com verificação de acesso à GPU e seed para reprodutibilidade. 

 
3.8 Procedimentos de treinamento 

O treinamento do modelo YOLOv8 foi conduzido em dois cenários distintos, com 

e sem data augmentation, com o objetivo de comparar o impacto da aplicação dessa 

técnica sobre o desempenho do modelo e sobre o custo computacional. 

Utilizou-se o YOLOv8m (detecção one-stage) com imgsz=640, batch size = 16 

e learning rate inicial = 0,01, mantendo otimizador/agendador padrão do framework. 

O treinamento foi invocado pela API do Ultralytics via model.train (...), conforme 

documentação oficial (ULTRALYTICS, 2023a; ULTRALYTICS, 2023e).  No Cenário 1 

(sem data augmentation), foram utilizadas 200 épocas de treinamento, batch size de 

16 e learning rate de 0,01. Já no Cenário 2 (com data augmentation), o modelo foi 

treinado por 170 épocas, com a manutenção do mesmo batch size (16) e learning rate 

(0,01). 
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O parâmetro batch size refere-se ao número de amostras processadas 

simultaneamente antes da atualização dos pesos, enquanto o learning rate controla 

a taxa de atualização dos parâmetros do modelo durante o processo de 

retropropagação. Ambos os parâmetros exercem influência direta sobre a 

estabilidade e a eficiência do treinamento (GOODFELLOW, BENGIO e COURVILLE, 

2016; ZHANG et al., 2021). Os parâmetros adotados em cada cenário estão 

resumidos na Tabela 1. 

Tabela 1 - Parâmetros de treinamento do YOLOv8 com e sem data augmentation 

 

 

size 

 
 

augmentation 
 

 
augmentation 

 

Fonte: Elaboração própria (2025). 

Para tornar explícitos os procedimentos empregados no treinamento, a Figura 

6 sintetiza o fluxo adotado. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cenários Épocas           Batch size 
Learning 

rate 
Tempo 

total 

Sem data 
200 16 

 
0,01 

 
3h04min 

Com data 170 16 
 

0,01 
 

6h34min 

 



 

 
 
 

42 
 

 

Figura 6 - Fluxograma de treinamento do modelo YOLO8m no Google Colab Pro 

 

 

Fonte: Elaboração própria (2025). 
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3.9 Métricas de Avaliação 

A mensuração do desempenho do modelo YOLOv8 foi realizada no ambiente 

Google Colab Pro, com a utilização dos módulos de validação da biblioteca Ultralytics, 

extraídos diretamente dos relatórios de execução gerados pelo framework. 

Esses resultados são apresentados pela ferramenta sob duas formas 

complementares: (i) registros tabulares (logs), que detalham os valores de precisão e 

recall ao final de cada época de treinamento; (ii) artefatos gráficos, com inclusão de 

curvas de aprendizado (F1-score, Precision-Recall) e matrizes de confusão, salvos 

automaticamente ao término do processo. Com base nesses dados brutos, foi 

possível compilar as métricas consagradas na literatura de visão computacional 

(PADILLA et al., 2021) para avaliar a qualidade das detecções. 

A Figura 7 ilustra visualmente os conceitos de Precisão, Revocação e os limiares 

de Interseção sobre União (IoU) adotados nesta pesquisa. Nela, os retângulos verdes 

representam as caixas delimitadoras reais (anotadas manualmente); os retângulos 

vermelhos indicam as predições realizadas pelo modelo. 

Figura 7- Representação das métricas de avaliação (Precisão, Recall, mAP50 e mAP95) 

 

Fonte: Adaptado de Padilla et al. (2021). 

 

Com base na representação visual da Figura 7 e nas definições estabelecidas 

por Padilla et al. (2021), as métricas são definidas como: 

Precisão (Precision): ilustrada no primeiro quadro da Figura 7, esta métrica 

avalia a confiabilidade das detecções positivas. Ela mensura a proporção de 

predições corretas (Verdadeiros Positivos) em relação ao total de caixas geradas pelo 

modelo. Em termos práticos, uma alta precisão indica que o modelo minimiza a 

ocorrência de falsos positivos, ou seja, "não inventa" pimentas onde elas não existem. 

Revocação (Recall): representada no segundo quadro, a revocação (ou 

sensibilidade) quantifica a capacidade do modelo em encontrar todas as instâncias 
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dos objetos de interesse presentes na imagem. Ela é calculada pela razão entre os 

acertos do modelo e o número total de objetos reais (ground truth). Um alto valor de 

recall indica que o sistema é eficaz em não omitir pimentas (minimiza falsos negativos) 

mAP50 (Média da Precisão com IoU ≥ 50%): conforme observado no terceiro 

quadro da Figura 7, o IoU (Interseção por União) calcula a área de interseção dividida 

pela área de união entre a caixa predita e a real. O mAP50 representa a média da 

precisão para todas as classes; considera como "acerto" apenas as predições que 

apresentam uma sobreposição de área superior a 50% com a anotação original. Este 

é o limiar padrão para avaliações de modelos de identificação. 

 
mAP95 (Média da Precisão com IoU 50-95%): Ilustrada no quarto quadro, esta 

é uma métrica de rigor elevado. Ela calcula a média da precisão na variação do limiar 

de IoU de 0,50 a 0,95, com incrementos de 0,05. Visualmente, isso exige que a caixa 

vermelha (predição) esteja quase perfeitamente alinhada à caixa verde (real). Esta 

métrica é fundamental para avaliar a precisão da localização geométrica do objeto. 

Ela penaliza detecções que, embora classifiquem corretamente a variedade, não 

delimitam perfeitamente as bordas do fruto. 

 

3.10 Desenvolvimento do protótipo do aplicativo App Pimentas 

Esta seção descreve, em nível operacional, os procedimentos adotados para 

desenvolvimento e disponibilização do protótipo do aplicativo web App Pimentas. Ao 

longo do texto, o termo “aplicativo” é utilizado para se referir a esse protótipo funcional, 

que constitui o artefato da pesquisa em Design Science. 

Buscou-se registrar o percurso técnico seguido na pesquisa de forma que ele 

possa ser compreendido e, em princípio, repetido por outros interessados, com foco 

na transparência e na reprodutibilidade do artefato. No âmbito da Design Science 

Research (DSR), a explicitação do processo de construção, do ambiente técnico e 

das decisões de projeto integra o rigor da pesquisa (HEVNER et al., 2004; HEVNER, 

2007; HEVNER, 2024). 

O aplicativo, em si, tem como objetivo principal identificar 8 variedades de 

pimentas a partir de imagens e disponibilizar informações associadas ao uso culinário 

e à ardência. A metodologia, por sua vez, busca descrever este processo desde o uso 

do modelo YOLOv8 exportado em ONNX até a interface web progressiva e a 
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implantação em nuvem (MAXWELL; BESTER; RAMEZAN, 2022). 

3.10.1 Arquitetura geral e tentativa inicial com Kodular 

Inicialmente, foi investigada a possibilidade de disponibilizar o modelo em um 

aplicativo Android nativo criado no Kodular. Kodular é uma plataforma visual no-code 

para desenvolvimento de aplicativos Android, baseada em componentes gráficos e 

blocos de programação, o que permite criar e compilar pacotes de instalação 

(arquivos APK, Android Package) sem necessidade de escrever código textual 

(KODULAR, 2025). 

Durante os testes em dispositivos Android, observou-se, porém, que as 

chamadas de câmera realizadas via navegador embutido (WebView) não acionavam 

corretamente o pedido de permissão do sistema operacional, o que impedia a captura 

de imagem no App, apesar de a mesma página funcionar normalmente no navegador 

Chrome do mesmo aparelho. Essa limitação é compatível com relatos técnicos sobre 

restrições de acesso à câmera e uso de getUserMedia em alguns contextos de 

WebView, que podem exigir configurações adicionais ou não oferecer suporte 

completo à API (ROUMELIOTIS; TSELIKAS, 2022). 

Diante dessa evidência empírica, optou-se por não prosseguir com o 

empacotamento via Kodular, mas adotar uma arquitetura em que o usuário acessa 

diretamente a aplicação pelo navegador do dispositivo, sem intermediação de 

WebViews. O registro dessa tentativa e de sua limitação técnica contribui para 

explicitar o caminho que levou à solução adotada. 

Na configuração consolidada, o protótipo passou a ser organizado em três 

camadas: 

Backend de inferência em Python, com a execução do modelo YOLOv8m 

exportado para o formato ONNX; 

Interface web em formato Progressive Web App (PWA), responsável pela 

interação com o usuário, captura/envio de imagens e exibição dos resultados; 

Infraestrutura de versionamento e implantação, baseada em repositório 

GitHub e serviço em nuvem do tipo Platform as a Service (PaaS), neste caso a 

plataforma Render. 
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3.10.2 Backend de inferência em Python, FastAPI e ONNX 

O backend, isto é, a parte da aplicação responsável pelo processamento no 

servidor e pela disponibilização das rotas HTTP, foi desenvolvido em Python, com a 

utilização do framework FastAPI. Este é um framework moderno para criação de APIs 

REST em Python, que, na sua vez, se apoia em anotações de tipo (type hints)  para 

validação automática de dados. Ele oferece boa performance em servidores 

assíncronos, além de gerar documentação automática em formato OpenAPI 

(TIANGOLO, 2018). 

O modelo de detecção utilizado é o YOLOv8m, na configuração padrão de 

arquitetura disponibilizada pela Ultralytics, previamente treinado e ajustado neste 

estudo para a detecção das classes de pimentas consideradas (Seção 3.x), e 

posteriormente exportado para o formato Open Neural Network Exchange (ONNX). 

O ONNX é um padrão aberto para representação de modelos de aprendizado 

de máquina, concebido para permitir interoperabilidade entre diferentes frameworks 

e facilitar a execução em ambientes variados, como servidores, dispositivos de borda 

e aceleradores de hardware (BAI et al., 2019; MICROSOFT, 2024). A execução do 

modelo em formato ONNX é realizada por meio da biblioteca Ultralytics YOLO, em 

conjunto com o ONNX Runtime, runtime de alto desempenho para inferência de 

modelos ONNX, mantido pela Microsoft (MICROSOFT, 2024). 

No arquivo main.py são definidos: 

• o caminho local do modelo (MODEL_PATH) e a URL remota (MODEL_URL), da 

qual o arquivo best.onnx é baixado na primeira execução; 

• a função ensure_model_file(), responsável por verificar a existência do arquivo 

local e efetuar o download quando necessário; 

• uma rotina de carregamento em segundo plano (background), que é executada 

automaticamente ao iniciar o servidor, que baixa e carrega o modelo ONNX em 

memória, com o registro de variáveis globais de estado (READY e LOAD_ERR). 

Dessa forma, ao utilizar o mesmo código-fonte e a mesma URL do arquivo 

best.onnx, configurada em MODEL_URL, diferentes instalações do sistema passam 
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a usar exatamente o mesmo modelo de detecção, o que está em linha com 

recomendações de boas práticas para reprodutibilidade e replicabilidade em 

experimentos de deep learning (MAXWELL; BESTER; RAMEZAN, 2022). 

As principais rotas expostas pelo backend são 

• POST /predict: recebe um arquivo de imagem (UploadFile); converte-o para o 

formato de cores RGB (vermelho, verde e azul); reduz a imagem de modo que o 

maior lado tenha no máximo 1.024 pixels; executa a inferência com o modelo 

YOLOv8m. A resposta da API é um objeto JSON que contém, para cada 

detecção, a classe prevista, o escore de confiança e as coordenadas da caixa 

delimitadora (bounding box); 

• GET /ui: entrega o documento HTML que compõe a interface de identificação de 

pimentas; 

• GET /info: entrega a interface do tipo chat que consome o arquivo estático 

pepper_info.json para exibir informações detalhadas sobre cada variedade. 

As rotas foram organizadas de modo a permitir que a API seja acessada e 

testada de forma direta (por exemplo, por meio de ferramentas de inspeção de 

requisições HTTP). Isto facilita a verificação do seu funcionamento em diferentes 

ambientes, em linha com recomendações de reprodutibilidade em workflows de 

aprendizado de máquina (MAXWELL; BESTER; RAMEZAN, 2022). 

3.10.3 Interface web e Progressive Web App (PWA) 

A interface do Aplicativo Pimentas foi desenvolvida como um Progressive Web 

App (PWA). Nessa abordagem, a aplicação é escrita com tecnologias web (HTML, 

CSS e JavaScript), mas passa a se comportar de forma semelhante a um aplicativo 

nativo. Pode ser instalada na tela inicial, pode funcionar com conectividade limitada. 

Isso é viabilizado pelo uso de um service worker, script que roda em segundo plano 

no navegador e controla o cache da aplicação, em conjunto com um mecanismo de 

armazenamento em cache e uma estrutura básica de interface (app shell) 

(ROUMELIOTIS; TSELIKAS, 2022).  

No projeto, a PWA é composta por 

• um arquivo de manifesto (manifest.webmanifest), configurado com o nome 
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do aplicativo, ícones, cores de tema e URL de início; 

• um service worker (sw.js), responsável por interceptar requisições e 

gerenciar o cache dos recursos essenciais; 

• arquivos HTML e JavaScript que controlam a interação no navegador: 

exibem os botões para tirar foto com a câmera ou selecionar uma imagem 

da galeria; os arquivos obtêm essa imagem, reduzem sua resolução no 

próprio navegador (com o uso de um elemento canvas) e a empacotam em 

um formulário (FormData) para enviá-la, por meio de uma requisição HTTP 

POST, ao endpoint /predict. Em seguida, o código JavaScript recebe a 

resposta da API em formato JSON; interpreta os campos retornados 

(classe prevista, escore de confiança e, quando disponível, a URL da 

imagem anotada) e atualiza a interface; mostra o nome da pimenta 

identificada e a respectiva imagem ao usuário. 

O service worker utiliza uma estratégia de cache do tipo app shell, na qual os 

arquivos básicos da interface são guardados localmente no navegador. No momento 

em que o service worker é instalado (evento install), ele pré-carrega um conjunto de 

caminhos essenciais, como /ui e /info, o arquivo de manifesto, os ícones e o 

pepper_info.json. Em seguida, os armazena em um cache identificado pelo nome 

CACHE_NAME. 

Quando o usuário navega pelo aplicativo, cada solicitação de recurso faz com 

que o navegador dispare o evento fetch. Nessa etapa, o código do service worker 

verifica o tipo de requisição e decide se o recurso será obtido diretamente da rede ou 

atendido a partir do conteúdo já armazenado em cache, com a aplicação de regras 

distintas para as rotas de interface e para o endpoint de predição (/predict). 

As regras implementadas no service worker para o atendimento das requisições 

são 

• Chamadas POST para /predict: são sempre encaminhadas diretamente à rede, 

sem uso de cache, de modo que cada requisição de predição utilize o resultado 

atual do modelo, sem reutilizar respostas anteriores. 

• Requisições para as rotas de interface (/ui, /info): adotam uma estratégia em 

que o navegador tenta obter o recurso primeiro na rede (network first); se a 
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conexão falhar, o service worker retorna a versão armazenada em cache, o que 

permite que a interface continue acessível mesmo com instabilidade de conexão. 

• Requisições de recursos estáticos (ícones, arquivos JSON, CSS): utilizam 

uma estratégia em que o service worker procura primeiro no cache (cache first); 

se o recurso não estiver disponível localmente, a busca é feita na rede (fallback), 

e o resultado é então armazenado em cache para usos futuros. 

Essa forma de uso do service worker e do cache segue a ideia de PWA descrita 

na literatura, em que aplicações web são configuradas para funcionar em diferentes 

dispositivos e em situações de conexão instável, e elas se mantêm baseadas em 

tecnologias web (ROUMELIOTIS; TSELIKAS, 2022). 

Na tela principal da PWA, o usuário encontra 

• botão para captura de imagem pela câmera do dispositivo; 

• botão para envio de uma imagem da galeria; 

• área para visualização da imagem enviada e, quando habilitado, da 

imagem anotada com bounding boxes; 

• texto com a classe de pimenta identificada e o respectivo nível de 

confiança. 

Na Figura 8, apresenta-se a tela inicial do App Pimentas, com os botões de 

escolha de imagem e abertura da câmera, bem como a visualização da imagem 

original e do resultado da detecção de pimentas. 
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Figura 8 - Tela inicial de identificação de pimentas do App Pimentas 

 

Fonte: Elaboração própria (2025). 
 

Na tela de informações complementares, acessada após o processo de 

identificação, o protótipo abre automaticamente um chat associado à variedade de 

pimenta reconhecida pelo modelo na etapa anterior. Quando apenas uma classe é 

detectada, o chat já é iniciado diretamente com essa pimenta; caso mais de uma 

classe seja identificada na mesma imagem, o usuário pode escolher, na própria 

interface, qual variedade deseja explorar primeiro. A partir desse ponto, o usuário 

pode navegar entre diferentes tipos de pimenta por meio de opções no próprio chat, 

com consulta aos tópicos, como definição, ardência, usos culinários, conservação e 

curiosidades, sem necessidade de voltar à tela de identificação. A Figura 9 apresenta 

a interface do chat de informações para a pimenta Habanero-Pepper. 
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Figura 9 - Tela de chat de informações do App Pimentas (com exemplo para a pimenta Habanero-
Pepper) 

 

Fonte: Elaboração própria (2025). 

3.10.4 Versionamento no GitHub e implantação na Render 

Para organizar o código e apoiar a replicação do protótipo, foi utilizado um 

repositório na plataforma GitHub, baseada no sistema de controle de versão 

distribuído Git. Repositórios Git têm sido amplamente adotados em ciência de dados 

e aprendizado de máquina justamente por permitirem rastrear mudanças, associar 

resultados a commits específicos e facilitar a colaboração (MAXWELL; BESTER; 

RAMEZAN, 2022). 

No repositório estão incluídos 

• o arquivo principal da API (main.py); 
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• os arquivos de configuração do ambiente (requirements.txt e runtime.txt); 

• os arquivos estáticos da PWA (manifest.webmanifest, sw.js, ícones, HTML 

e JavaScript); 

• o arquivo pepper_info.json, com as informações textuais sobre as 

pimentas. 

O aplicativo foi implantado na plataforma Render, que é um serviço de Platform 

as a Service (PaaS) para hospedagem de aplicações web. Plataformas PaaS 

abstraem parte da complexidade de configuração de servidores (sistema operacional, 

servidor de aplicação, bibliotecas) e permitem reproduzir ambientes de execução a 

partir de configurações declarativas (MICROSOFT, 2024). 

Na configuração adotada, a plataforma Render está vinculada ao repositório do 

projeto no GitHub. Sempre que há uma nova atualização no branch configurado, a 

Render cria um ambiente com Python 3.10, instala as dependências listadas em 

requirements.txt e inicia o servidor FastAPI com um comando do tipo uvicorn 

main:app. Variáveis de ambiente, como MODEL_URL e HF_TOKEN, são registradas 

diretamente no painel da Render, o que evita que esses valores apareçam nos 

arquivos do repositório. Essa combinação entre código versionado e uso de um 

serviço PaaS contribui para organizar o processo de implantação e oferece um 

caminho relativamente simples para que outro pesquisador configure um ambiente de 

execução equivalente. 

3.10.5 Procedimento de replicação do protótipo 

1. Obter o código-fonte 

• Acessar o repositório do projeto no GitHub (conforme Apêndice B), referente 

ao commit utilizado nesta dissertação, e clonar o repositório ou baixar o pacote 

de código. 

2. Configurar o ambiente Python 

• Instalar Python 3.10.; 

• Criar um ambiente virtual e instalar as dependências com pip install -r 

requirements.txt. 
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3. Configurar o modelo ONNX 

• Definir a variável de ambiente MODEL_URL apontando para o arquivo 

best.onnx (modelo treinado em YOLOv8m); 

• Opcionalmente, configurar token de acesso para o repositório do modelo, se 

necessário. 

4. Executar o backend localmente 

• Iniciar o servidor com uvicorn main:app --host 0.0.0.0 --port 8000; 

• verificar, em http://localhost:8000/, o status de carregamento do modelo. 

5. Acessar a interface PWA 

• Abrir http://localhost:8000/ui em um navegador; 

• Instalar o app na tela inicial, caso o navegador ofereça essa opção; 

• Testar o envio de imagens e o retorno dos resultados de inferência. 

6. Validar a tela de informações complementares 

• Acessar http://localhost:8000/info e verificar o carregamento do conteúdo de 

pepper_info.json; 

• Conferir se as informações exibidas correspondem às classes de pimentas 

utilizadas no modelo. 

Embora o App Pimentas tenha sido registrado como programa de computador, 

o código-fonte utilizado nesta pesquisa foi disponibilizado em repositório Git na 

plataforma GitHub, conforme indicado no Apêndice B. Essa opção permite que outros 

pesquisadores acessem a implementação do protótipo, com a inclusão de arquivos 

de código, configurações de ambiente e o commit específico associado a esta 

dissertação, o que facilita a reconstrução do ambiente descrito nos passos anteriores 

e a realização de estudos posteriores a partir do mesmo ponto de partida. 

A descrição detalhada desses passos, associada à disponibilização do código e 

à indicação da versão específica do modelo ONNX, vai ao encontro de 

recomendações recentes sobre transparência e reprodutibilidade em DSR e em 
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workflows de aprendizado de máquina (HEVNER; VOM BROCKE, 2023; MAXWELL; 

BESTER; RAMEZAN, 2022). 

Adicionalmente, o protótipo descrito nesta seção foi objeto de pedido de registro 

como programa de computador junto ao Instituto Nacional da Propriedade Industrial 

(INPI), sob o título App Pimentas, processo nº 512025006150-1, com petição 

eletrônica nº 870250108484, protocolada em 26 nov. 2025. Esse registro tem a 

finalidade de resguardar a autoria e os direitos relativos ao software e não impede a 

disponibilização do código-fonte em repositório Git para fins de pesquisa, conforme 

indicado no Anexo B. 

Concluída a etapa de implementação, o protótipo será disponibilizado para 

validação prática junto à equipe parceira da CEAGESP, a fim de validar  sua 

aplicabilidade em ambiente  real, coletar feedback de usuários e orientar melhorias 

futuras. 

3.11 Procedimento de validação do protótipo 

 
Para uma avaliação inicial do protótipo no contexto de uso, foi realizado contato 

com a equipe do Centro de Qualidade Hortigranjeira da CEAGESP. Foi enviado um 

e-mail ao chefe da seção, com o link de acesso ao aplicativo App Pimentas e o link 

para um questionário eletrônico de avaliação elaborado na plataforma Microsoft 

Forms (ver Apêndice A). 

O instrumento utilizado foi um questionário estruturado, em formato digital, 

composto por uma breve apresentação dos objetivos do estudo e instruções de 

preenchimento, seguido de uma escala de concordância de cinco pontos (1 = discordo 

totalmente; 5 = concordo totalmente). O questionário foi organizado em quatro blocos 

temáticos: (i) Usabilidade e experiência do usuário, com itens sobre facilidade de 

aprendizagem, navegação entre telas e uso da câmera nas condições de trabalho 

(galpão/box); (ii) Desempenho e precisão da inteligência artificial, com abordagem 

de acerto na identificação do tipo de pimenta, na capacidade de classificar lotes 

mistos ou parcialmente cobertos e no alinhamento com a classificação padrão 

utilizada na CEAGESP; (iii) Desempenho operacional e confiança, com questões 

relativas à latência entre a captura da foto e a apresentação do resultado e ao grau 

de confiança do usuário na classificação para fins de decisão (por exemplo, 

destinação ou preço); (iv) Utilidade percebida e intenção de uso, que trata da 
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estabilidade do aplicativo, da utilidade da informação de classificação para a atividade 

profissional, da percepção de agregação de valor à conferência ou negociação e da 

intenção de uso futuro do aplicativo. 

O questionário foi configurado para não coletar automaticamente dados 

pessoais dos respondentes (como nome ou endereço de e-mail) e não incluiu 

questões específicas de caracterização de perfil (por exemplo, idade, escolaridade ou 

função detalhada). O foco do instrumento esteve na avaliação da usabilidade, do 

desempenho percebido do modelo e da utilidade prática do protótipo no contexto de 

trabalho. 

Até a data de fechamento desta dissertação, o questionário não havia recebido 

respostas válidas por parte da equipe do Centro de Qualidade Hortigranjeira da 

CEAGESP. Dessa forma, não foram produzidos resultados quantitativos de validação 

em campo, e a avaliação sistemática com usuários externos permanece como etapa 

pendente. Ainda assim, a descrição do instrumento e do procedimento de convite é 

mantida nesta seção como registro metodológico, e é retomada no Capítulo V como 

limitação do estudo e recomendação para trabalhos futuros.
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CAPÍTULO IV 
 

 
4 RESULTADOS E DISCUSSÕES 

4.1 Dataset 

Este item atende ao objetivo específico A, que consistiu em construir e 

organizar um dataset de imagens de variedades de Capsicum spp.. Foram coletadas 

1.476 imagens na CEAGESP e em repositórios públicos, posteriormente anotadas e 

expandidas por técnicas de data augmentation, o que resultou 3.964 imagens. O 

dataset foi organizado em partições para treinamento, validação e teste, e está 

disponível para download no link: https://figshare.com/s/22c9578a30a4c5409bc7, fato 

que contribui para a replicabilidade da pesquisa. Esse resultado reforça a relevância 

do estudo ao fornecer uma base inédita dedicada especificamente à classificação 

automática de pimentas. 

A criação do dataset preenche uma lacuna identificada na literatura (DALAL e 

MITTAL, 2025; KHAN, SHEN e LIU, 2025), em que a ausência de bases de dados 

específicas para pimentas limitava experimentos reprodutíveis. Além disso, o 

resultado conecta-se ao ODS 9 (Indústria, Inovação e Infraestrutura) ao disponibilizar 

infraestrutura científica aberta que pode ser reutilizada por outros pesquisadores. 

A construção deste dataset não apenas atendeu ao objetivo específico A, mas 

também foi o alicerce para o desenvolvimento do objetivo específico B. O artigo 

científico apresentado na seção seguinte só pôde ser realizado graças à existência 

desse repositório de imagens, que viabilizou o treinamento, a avaliação e a validação 

experimental do modelo YOLOv8. 

4.2 Artigo Científico - Identificação Automatizada de Variedades de Pimentas com 
YOLOv8 

Este item responde ao objetivo específico B, que consistiu em avaliar o 

desempenho da arquitetura YOLOv8 em cenários com e sem data augmentation. 

Apresenta o artigo científico intitulado "YOLOv8 for Automated Pepper Variety 

Identification: Improving Accuracy with Data Augmentation". O trabalho foi 

desenvolvido com o objetivo de aplicar e avaliar o desempenho da arquitetura de rede 
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neural convolucional YOLOv8 na identificação automatizada de variedades de 

pimentas no contexto pós-colheita. 

A pesquisa valida o uso do modelo YOLOv8 para aprimorar o controle de 

qualidade no setor agroalimentar e, por isto, aborda a necessidade de identificação 

de oito variedades de pimentas: Biquinho, Bode, Chili, Fidalga, Habanero, Jalapeño, 

Scotch Bonnet e Cambuci. Para isso, foi construído e utilizado um dataset com 1.476 

imagens anotadas, que foi se expandido por meio de técnicas de aumento de dados 

para otimizar a performance do modelo. Conforme detalhado no artigo, o treinamento 

com o dataset aumentado resultou melhorias significativas em indicadores-chave de 

desempenho, como box precision, recall e mean average precision (mAP). 

Esse resultado indica que, apesar de os desafios de variabilidade morfológica 

e iluminação em ambientes comerciais serem significativos (KHAN, SHEN e LIU, 

2025), técnicas de augmentation podem ampliar a capacidade de generalização do 

modelo e mitigar riscos de overfitting. A contribuição científica é reforçada pelo 

reconhecimento em publicação revisada por pares, enquanto a contribuição prática 

está em oferecer um modelo mais robusto para ambientes reais. Em termos de 

impacto, conecta-se ao ODS 2 (Fome Zero e Agricultura Sustentável), ao apoiar 

processos de classificação mais confiáveis que podem reduzir perdas pós-colheita. 

O artigo foi aceito e publicado na revista Applied Sciences (v. 15, e7024, 2025.) 

em 22 de junho de 2025. A íntegra do artigo publicado está disponível no ANEXO A. 

Os resultados obtidos apresentados no artigo indicam a aplicabilidade da 

arquitetura YOLOv8 para a identificação de pimentas. A métrica geral de mAP50 

alcançou 0.694 com o uso de data augmentation. Este valor deve ser analisado no 

contexto da complexidade da tarefa, que envolve a classificação de grão fino (fine- 

grained classification), um desafio em visão computacional em que as classes 

apresentam elevada similaridade visual e a distinção depende de características sutis 

(WEI et al., 2022), entre oito variedades com elevada similaridade visual. Diante deste 

cenário, um desempenho de 0.694 sugere que o modelo foi capaz de aprender 

características distintivas e estabeleceu um ponto de partida para a validação da 

tecnologia. 
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A análise por classe indica diferenças relevantes de desempenho entre as 

variedades. A Cambuci-Pepper, cuja morfologia é mais singular em relação às 

demais, apresentou mAP50 de 0,827. Essa diferença é compatível com resultados de 

tarefas de classificação de imagens em que classes visualmente mais distintas 

tendem a ser melhor discriminadas. Já as categorias com alta semelhança visual 

concentram as principais confusões de classe, como relatado em problemas de 

reconhecimento de caracteres manuscritos e de espécies vegetais com grande 

similaridade morfológica (SAYEED et al., 2021; RANI et al., 2025).  

Em contraste, no caso da Fidalga-Pepper, observou-se redução da BoxP de 

0,768 para 0,652 após a aplicação do data augmentation. Uma hipótese plausível é 

que, em variedades muito semelhantes entre si, determinadas transformações de 

aumento de dados possam enfatizar padrões visuais comuns e atenuar pistas 

morfológicas distintivas, o que aumenta a confusão entre classes. Estudos recentes 

destacam que o efeito do data augmentation é dependente do contexto: embora 

frequentemente melhore o desempenho, em alguns cenários pode não produzir 

ganhos ou pode degradar métricas específicas. Isto dependerá da combinação de 

técnicas utilizada e da arquitetura do modelo (ALOMAR; AYSEL; CAI, 2023; OMONIYI 

et al., 2025).  

Esses achados são consistentes com evidências de que a combinação entre 

alta similaridade visual entre classes e estratégias de data augmentation não 

adaptadas ao domínio pode aumentar confusões em tarefas de classificação fina 

(ALOMAR; AYSEL; CAI, 2023; RANI et al., 2025). 

A pesquisa contribui para a literatura ao apresentar um dataset público para a 

classificação de Capsicum spp., uma lacuna apontada por Khan, Shen e Liu (2025) e 

Dalal e Mittal (2025). A disponibilização dos dados alinha-se ao ODS 9 (Indústria, 

Inovação e Infraestrutura), ao fomentar a replicabilidade e o avanço de novas 

pesquisas. 

A validação do YOLOv8 como ferramenta aplicável reforça o potencial da visão 

computacional na Agricultura 4.0, conforme discutido por Javaid et al. (2022) e 

Lezoche et al. (2020). A automação da classificação em centrais, como a CEAGESP, 

pode mitigar gargalos logísticos e erros de inspeção manual e impactar positivamente 

o ODS 12 (Consumo e Produção Responsáveis). 
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As limitações da pesquisa devem ser reconhecidas. O conjunto de teste, embora 

diverso, é numericamente reduzido, uma vez que a estratégia priorizou um maior 

volume de dados para o treinamento do modelo. Adicionalmente, mesmo que a coleta 

de imagens tenha ocorrido em um ambiente comercial real (CEAGESP), a 

metodologia buscou amostras com maior "uniformidade de iluminação e 

enquadramento". Essa abordagem, necessária para garantir a qualidade do dataset 

inicial, pode não ter capturado toda a extensão de condições adversas encontradas 

no ambiente do entreposto, como sombras intensas, oclusões parciais ou baixa 

luminosidade. Portanto, a generalização do modelo para condições de captura 

totalmente irrestritas ainda representa um campo para validação futura. 

Apesar dessas limitações, os resultados alcançados indicam o potencial do 

YOLOv8 como solução viável para a classificação de pimentas. Essa validação 

experimental constitui a base para o terceiro objetivo específico da pesquisa, que 

consiste no desenvolvimento de um protótipo de aplicativo móvel. A transição do 

ambiente de testes para uma solução prática busca ampliar a utilidade do estudo. 

Com isto, disponibiliza-se o modelo em uma ferramenta acessível para produtores, 

comerciantes e consumidores na CEAGESP, com funcionalidades adicionais de 

apoio por meio de um chatbot informativo. 

4.3 Protótipo do aplicativo App Pimentas 

Este item apresenta os resultados relacionados ao objetivo específico C, que 

consistiu em desenvolver um protótipo de aplicativo integrado ao modelo YOLOv8m 

para identificação automática de variedades de pimentas comercializadas na 

CEAGESP. O protótipo foi implementado como aplicação web progressiva (PWA), 

conforme descrito no Capítulo 3, e implantado em ambiente de produção na 

plataforma Render, a partir do repositório versionado do projeto. 

Do ponto de vista funcional, o protótipo permite que o usuário capture uma 

imagem pela câmera do dispositivo ou selecione uma foto previamente armazenada 

na galeria, envie essa imagem ao backend de inferência e visualize, na própria 

interface, a variedade de pimenta identificada e o nível de confiança associado à 

predição. Quando a opção está habilitada, a aplicação também exibe a imagem 

anotada com as caixas delimitadoras (bounding boxes) sobre os frutos detectados. 

Na tela principal do aplicativo, o usuário encontra (i) botão para captura de 
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imagem pela câmera do dispositivo; (ii) botão para envio de uma imagem da galeria; 

(iii) área para visualização da imagem enviada e, quando habilitado, da imagem 

anotada com bounding boxes; (iv) texto com a classe de pimenta identificada e o 

respectivo nível de confiança. Essa tela inicial do protótipo já foi apresentada na 

Figura 8 (Seção 3.10), que ilustra o fluxo de identificação de pimentas em execução 

em dispositivo móvel. 

Depois de realizada a predição, o protótipo abre automaticamente a tela de 

informações complementares, em formato de chat, vinculada à variedade de pimenta 

identificada. Quando há apenas uma classe detectada, o chat é carregado 

diretamente com essa pimenta. Quando o modelo retorna mais de uma classe, a 

interface oferece ao usuário a possibilidade de escolher com qual variedade deseja 

iniciar a consulta. A qualquer momento, o usuário pode alternar entre diferentes tipos 

de pimentas no próprio chat, no acesso a informações sobre definição, ardência, usos 

culinários e outras características, a partir do conteúdo estruturado no arquivo 

pepper_info.json. Esse comportamento da interface pode ser observado na Figura 9 

(Seção 3.10), que mostra um exemplo de diálogo com o aplicativo para uma 

variedade específica de pimenta. 

Durante o desenvolvimento, foram realizados testes funcionais internos, 

conduzidos pela autora, com o objetivo de verificar o fluxo de uso do protótipo em 

condições controladas: captura ou seleção de imagens, envio ao endpoint /predict, 

retorno dos resultados em formato JSON e atualização da interface com a variedade 

identificada. Esses testes permitiram corrigir problemas de layout e de tratamento de 

erros (por exemplo, envio de arquivos em formato incorreto ou ausência de conexão 

no momento da requisição), bem como verificar a integração entre a PWA e o backend 

de inferência. 

Em síntese, ao final da etapa de desenvolvimento, o protótipo do App Pimentas 

encontra-se funcional e acessível via navegador, a partir de URL pública, com suporte 

à captura de imagens em dispositivos móveis, execução do modelo YOLOv8m em 

formato ONNX no servidor e apresentação dos resultados em interface voltada ao 

uso prático em ambientes de comercialização de hortigranjeiros, e a CEAGESP tem 

o estudo de caso inicial. 
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4.4 Tentativa de validação do protótipo com a equipe da CEAGESP 

Esta seção descreve a etapa de validação do protótipo App Pimentas planejada 

no Centro de Qualidade Hortigranjeira da CEAGESP e a situação efetivamente 

observada até o fechamento desta dissertação. Em linha com o procedimento 

metodológico apresentado na Seção 3.11, previu-se a aplicação de um questionário 

estruturado a profissionais da CEAGESP, de modo a captar percepções sobre 

usabilidade, desempenho percebido do modelo e utilidade prática do protótipo no 

contexto de trabalho. 

Entretanto, apesar do envio do convite e da disponibilização do aplicativo em 

ambiente de produção, não foram registradas respostas ao questionário durante o 

período de coleta. Assim, não há resultados empíricos suficientes para uma análise 

quantitativa ou estatística da aceitação do protótipo pela equipe da CEAGESP. Nesta 

seção, são apresentados o procedimento de coleta adotado e as implicações dessa 

ausência de retorno para a interpretação dos resultados da pesquisa. 

4.4.1 Procedimento de coleta 

A validação do protótipo no contexto de uso foi planejada por meio de um 

questionário eletrônico elaborado na plataforma Microsoft Forms, conforme detalhado 

na Seção 3.11 e apresentado integralmente no Apêndice A. O link de acesso ao App 

Pimentas, hospedado na plataforma Render, e o link do questionário foram 

encaminhados por e-mail ao chefe da seção de qualidade hortigranjeira da 

CEAGESP, com solicitação de divulgação aos demais membros da equipe técnica. 

O instrumento manteve a estrutura originalmente proposta: uma breve 

apresentação dos objetivos do estudo, seguida por itens organizados em blocos 

temáticos (usabilidade, desempenho percebido da inteligência artificial, desempenho 

operacional e confiança, utilidade percebida e intenção de uso), todos avaliados em 

escala de concordância de cinco pontos (1 = discordo totalmente a 5 = concordo 

totalmente), além de um campo aberto opcional para comentários. 

O formulário permaneceu disponível para respostas de 19/11/2025 a 

02/12/2025, data de fechamento desta dissertação. Nesse intervalo, não foram 

registradas respostas válidas, o que impossibilitou a consolidação de resultados 

numéricos ou a análise comparativa entre respondentes. 
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4.4.2 Retorno obtido e implicações pra análise 

Diante da ausência de respostas ao questionário, não foi possível realizar a 

análise descritiva planejada na Seção 3.11. Não há, portanto, distribuição de 

frequências por item, médias por bloco temático ou síntese quantitativa das 

percepções da equipe da CEAGESP sobre o protótipo. 

Essa situação restringe a avaliação do App Pimentas sob a perspectiva dos 

usuários finais previstos, de modo que a discussão desta dissertação, no que se 

refere à etapa de validação, permanece concentrada em dois níveis: 

• testes funcionais internos, realizados pela autora, que verificaram o fluxo básico 

de uso (captura ou seleção de imagens, envio ao endpoint /predict, retorno do 

JSON de predição e atualização da interface); 

• análise conceitual da adequação do protótipo ao contexto de uso, com base na 

literatura sobre Agricultura 4.0, visão computacional e serviços digitais em 

agricultura. 

Em outras palavras, o estudo conseguiu avançar na validação técnica 

(desempenho do modelo YOLOv8m e funcionamento da arquitetura PWA/Backend), 

mas não obteve evidências empíricas suficientes para uma validação organizacional 

do protótipo com a equipe da CEAGESP. Essa distinção ajuda a situar o alcance dos 

resultados: o protótipo mostrou-se funcional e tecnicamente viável nas condições 

avaliadas, mas sua aceitação e sua utilidade prática no ambiente do entreposto 

permanecem como questões em aberto para investigações futuras. 

4.4.3 Síntese da etapa de validação 

Em síntese, a etapa de validação planejada com a equipe do Centro de 

Qualidade Hortigranjeira da CEAGESP não se concretizou em termos de respostas 

ao questionário, o que impede a apresentação de resultados estatísticos ou de 

conclusões baseadas em evidências coletadas em campo. 

Ainda assim, o registro do procedimento adotado, o convite formal por e-mail, a 

disponibilização de link público para o protótipo e uso de questionário estruturado em 

plataforma digital podem ser úteis por pelo menos três motivos: 

1. Transparência metodológica: explicita-se que houve uma tentativa de validação 

com usuários reais, bem como suas limitações práticas, o que evita que se atribua 
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ao protótipo um grau de validação que ele ainda não possui; 

2. Delimitação do escopo dos resultados: reforça-se que, nesta dissertação, o 

foco recai sobre o desempenho do modelo YOLOv8m, a construção do dataset e 

a implementação do protótipo em arquitetura PWA, enquanto a avaliação 

sistemática por usuários permanece pendente; 

3. Agenda para pesquisas futuras: o questionário e o procedimento descritos 

podem ser reaproveitados em ciclos posteriores de Design Science Research, 

seja com a própria equipe da CEAGESP, seja com outros atores da cadeia de 

valor das pimentas, o que permite aprofundar a análise sobre usabilidade, 

utilidade percebida e impacto do protótipo na rotina de trabalho. 

Essa leitura é retomada no Capítulo V, em que a ausência de respostas ao 

questionário é explicitada como limitação do estudo e como oportunidade para 

pesquisas subsequentes.
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CAPÍTULO V 
 

 
5 CONCLUSÕES  

5.1 Considerações gerais sobre a pesquisa 

Este trabalho partiu da seguinte questão orientadora: Como aplicar e avaliar a 

arquitetura YOLOv8 na identificação automática de variedades de Capsicum spp. em 

ambientes comerciais de alta complexidade e integrá-la a um protótipo de aplicativo 

móvel voltado ao uso prático? A investigação foi estruturada sob a perspectiva da 

Design Science Research (DSR), com o entendimento do protótipo dataset, modelo 

e aplicação web, como artefato por meio do qual se constrói e se organiza 

conhecimento de projeto (design knowledge) sobre o problema estudado. 

As etapas de construção do dataset, o treinamento do modelo YOLOv8m, a 

avaliação dos resultados e o desenvolvimento do protótipo App Pimentas em 

arquitetura PWA permitiram explorar questões técnicas (desempenho, generalização 

e impactos do data augmentation). Em linha com a perspectiva da DSR, aplicada às 

ciências agrárias, o artefato não é tratado como solução “final”, mas como um arranjo 

experimental que ajuda a explicitar condições, limitações e possibilidades de uso de 

visão computacional na cadeia  

De forma geral, os resultados indicaram que a combinação entre um modelo 

YOLOv8m treinado em um dataset específico de pimentas e uma arquitetura web, 

baseada em PWA, constitui uma alternativa tecnicamente viável para apoiar a 

identificação automática de variedades de Capsicum spp., desde que se reconheçam 

os limites de generalização do modelo e o caráter exploratório do protótipo. O trabalho 

também reforçou que, em tarefas de classificação fina (fine-grained), a construção do 

dataset, o desenho das estratégias de aumento de dados e a definição do contexto 

de uso têm impacto direto nas métricas obtidas e na utilidade prática do sistema. 

5.2 Contribuições da pesquisa 
5.2.1 Contribuições científicas 

No plano científico, a pesquisa se soma aos estudos que exploram o uso de 

visão computacional na agricultura e na cadeia de alimentos, em especial aqueles 

que tratam de detecção e classificação de plantas, frutos ou doenças em imagens 

capturadas em cenário de campo ou de pós-colheita. 
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A análise dos resultados do modelo contribui para a literatura de classificação 

de grão fino ao ilustrar, em um caso aplicado, como diferenças de morfologia entre 

classes favorecem ou dificultam a discriminação por redes profundas. Contribuem 

ainda ao ilustrar como certas combinações de data augmentation podem, em 

contextos muito sensíveis, não produzir ganhos homogêneos entre as classes. Esses 

achados dialogam com revisões sobre análise de imagens de alta granularidade, que 

apontam a importância de considerar cuidadosamente quais transformações são 

compatíveis com as pistas visuais que distinguem cada grupo de interesse. 

Além disso, o estudo operacionaliza, em um domínio concreto, proposições 

recentes sobre o papel da DSR na renovação das ciências agrárias ao articular a 

construção de um artefato tecnológico com a compreensão do contexto produtivo e 

institucional em que ele pode ser utilizado. Essa articulação é particularmente 

relevante em um cenário em que a Agricultura 4.0 e os serviços digitais em agricultura 

são vistos como promissores, mas ainda convivem com lacunas de infraestrutura, de 

dados e de desenho de soluções ajustadas às rotinas dos usuários finais. 

5.2.2 Contribuições metodológicas 

Do ponto de vista metodológico, uma preocupação central deste trabalho foi 

documentar, de forma transparente e detalhada, o processo de construção do 

protótipo App Pimentas, bem como as condições necessárias para sua reconstrução 

em outros ambientes técnicos. Essa postura dialoga com a perspectiva da Design 

Science Research (DSR), que enfatiza a necessidade de tornar explícitos o ciclo de 

construção e de avaliação do artefato, o contexto de aplicação e os artefatos gerados, 

como condição para o rigor e para a utilidade científica da pesquisa (HEVNER et al., 

2004; HEVNER, 2007). 

No caso específico do App Pimentas, essa preocupação se materializou na 

organização de uma cadeia de implementação que explicita os principais elementos 

do ambiente: (i) um repositório Git que contém o código-fonte do backend em FastAPI 

e da interface PWA; (ii) um arquivo requirements.txt com as dependências 

necessárias ao ambiente Python; (iii) arquivos de configuração da interface web 

(HTML, JavaScript, manifesto e service worker); (iv) o uso de variáveis de ambiente 

para parametrizar o caminho do modelo best.onnx e outras configurações sensíveis. 

A literatura em inteligência artificial e aprendizado de máquina tem apontado, de 

forma recorrente, que a ausência de informação sobre código, dados, ambiente e 
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procedimentos de execução é um dos principais obstáculos à reprodutibilidade de 

estudos empíricos (GUNDERSEN e KJENSMO, 2018; PINEAU et al., 2021; DESAI; 

ABDELHAMID; PADALKAR, 2025). 

Ao explicitar o uso de repositório Git, arquivo requirements.txt, variáveis de 

ambiente, logs de carregamento do modelo e procedimentos passo a passo para 

reconstrução do ambiente, o trabalho responde a recomendações da literatura de 

ciência de dados que vêm destacando a importância do versionamento e da 

documentação de pipelines para a reprodutibilidade de experimentos de aprendizado 

de máquina (GUNDERSEN e KJENSMO, 2018; PINEAU et al., 2021). Nesse sentido, 

a metodologia proposta pode servir como referência para outros pesquisadores que 

desejem implantar protótipos semelhantes, seja em agricultura, seja em outros 

domínios que demandem classificação de imagens em tempo quase real.  

A opção por uma arquitetura PWA também tem dimensão metodológica. Ao 

empregar apenas tecnologias padrão da web (HTML, CSS e JavaScript), 

complementadas por service worker e mecanismos de cache, o protótipo pôde ser 

utilizado em diferentes dispositivos sem exigir a instalação de um aplicativo nativo. 

Sendo assim, o fato reduz barreiras de entrada e se mostra condizente com 

descrições de PWAs como aplicações web instaláveis, baseadas em tecnologias 

padrão, capazes de oferecer uso em múltiplas plataformas e funcionamento em modo 

offline ou com conectividade instável (CHERUKURI, 2024; MUAWWAL, 2024). 

Além disso, a metodologia descreve, em passos operacionais, os procedimentos 

necessários para reconstruir o protótipo em outro ambiente: obtenção do código-fonte 

(via repositório Git ou pacote associado a um commit específico), instalação do 

Python e das dependências por meio do requirements.txt, configuração da variável 

de ambiente MODEL_URL, o que aponta para o arquivo best.onnx, para a 

inicialização do servidor FastAPI e para o acesso às rotas principais (/ui, /predict e 

/info). A descrição desses passos busca atender as recomendações de que estudos 

em aprendizado de máquina explicitem não apenas os resultados, mas também o 

pipeline técnico que os produz, o que facilita a repetição e a extensão de experimentos 

por outros grupos de pesquisa (GUNDERSEN e KJENSMO, 2018; PINEAU et al., 

2021; DESAI; ABDELHAMID; PADALKAR, 2025). 

5.2.3 Contribuições práticas 

No plano prático, a pesquisa resultou um protótipo funcional que ilustra como 
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modelos de detecção de objetos podem ser integrados ao cotidiano de um entreposto 

hortigranjeiro. Embora ainda não se trate de uma solução pronta para adoção em 

escala, o App Pimentas fornece um exemplo concreto de como organizar, em uma 

mesma interface, a identificação automática de variedades de pimentas e a 

disponibilização de informações sobre ardência, uso culinário, conservação e 

curiosidades, em formato de chat acessível de dispositivos móveis. 

Essa contribuição prática tem potencial para apoiar não apenas a equipe técnica 

da CEAGESP, mas também estudantes, pesquisadores e outros profissionais 

interessados em testar, adaptar ou expandir o artefato para outros produtos agrícolas 

ou outros contextos de comercialização. Ao longo do processo, foram identificados 

pontos de atenção que podem orientar iniciativas futuras, como a necessidade de 

calibrar o fluxo de interação às condições reais de uso (tempo disponível, qualidade 

da rede, familiaridade com tecnologias digitais) e de considerar desde cedo 

estratégias para manutenção e atualização contínua do modelo à medida que outras 

variedades de pimentas sejam implementadas. 

5.3 Limitações e implicações 

Como em todo estudo empírico, os resultados apresentados devem ser 

interpretados à luz de limitações específicas. 

A primeira diz respeito ao próprio dataset. As imagens utilizadas foram coletadas 

em condições e contextos limitados, com foco em oito variedades de Capsicum spp. 

comercializadas em um único entreposto. Isso significa que o modelo foi exposto a 

um conjunto relativamente restrito de variações de iluminação, disposição dos frutos, 

tipos de embalagem e combinações de produtos. Em cenários de aplicação 

diferentes, outros mercados, outras regiões, outros arranjos de bancas, é plausível 

que o desempenho se altere, o que reforça a necessidade de processos contínuos de 

atualização do dataset e de re-treinamento do modelo quando se pretende ampliar o 

escopo de uso. 

Uma segunda limitação está associada às estratégias de data augmentation. 

Embora tenham sido importantes para aumentar a diversidade aparente das imagens 

de treinamento, os resultados mostraram que, em classes visualmente muito 

próximas, algumas transformações podem reforçar semelhanças em vez de destacar 

diferenças e produzir efeitos distintos entre as classes. Isso sugere que abordagens 
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de aumento de dados em classificação de grão fino talvez exijam configurações mais 

cuidadosas, possivelmente adaptadas a cada grupo de interesse, em linha com 

análises recentes sobre efeitos contextuais do data augmentation em redes 

profundas. 

Do ponto de vista arquitetural, a opção por realizar a inferência no servidor, e 

não diretamente no dispositivo, implica dependência de conexão de rede para uso do 

protótipo. Embora a arquitetura PWA permita algum nível de funcionamento em 

condições de conectividade instável (cache de interface, mensagens de erro mais 

controladas), a identificação de pimentas em si não ocorre offline. Isso pode limitar o 

uso em ambientes com cobertura precária ou em situações em que a rede local do 

mercado esteja sobrecarregada. 

Por fim, a avaliação com usuários não pôde ser efetivamente realizada. Essa 

ausência de retorno configura uma limitação importante do estudo e indica que a 

etapa de validação com usuários externos ainda precisa ser conduzida em ciclos 

futuros de pesquisa, seja com a CEAGESP, seja com outros contextos de 

comercialização de hortigranjeiros. 

Em consequência, o objetivo específico C (“desenvolver e validar um protótipo 

de aplicativo móvel que integre o modelo YOLOv8”), foi atendido de forma parcial: o 

protótipo foi desenvolvido e colocado em funcionamento em ambiente web (PWA), 

com integração ao modelo YOLOv8m em formato ONNX, mas a validação com 

usuários finais permaneceu restrita a testes funcionais internos, sem a etapa de 

avaliação estruturada no contexto da CEAGESP. 

Essas limitações não invalidam os achados, mas delimitam o alcance das 

conclusões. Elas reforçam a importância de tratar o protótipo como ponto de partida 

para estudos subsequentes e de integrar, em ciclos de DSR, avaliações técnicas e 

organizacionais mais amplas, como sugerem discussões recentes sobre a adoção de 

serviços digitais em agricultura. 

Uma limitação adicional refere-se ao módulo de chat do protótipo. Nesta etapa, 

o chat foi implementado de forma propositalmente simples, a partir de um conjunto 

fixo de respostas estruturadas em arquivo JSON e regras de navegação entre tópicos, 

sem utilização de modelos de linguagem de grande porte (large language models, 

LLMs) nem de técnicas de geração aumentada por recuperação (retrieval-augmented 
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generation, RAG). 

Modelos de linguagem combinados com mecanismos de recuperação em bases 

externas têm sido investigados como alternativa promissora para tarefas de pergunta-

resposta intensivas em conhecimento. Eles permitem recuperar documentos 

relevantes de um repositório especializado e utilizá-los como contexto para a geração 

de respostas mais específicas e fundamentadas (LEWIS et al., 2020). 

No contexto deste trabalho, abordagens baseadas em LLM e RAG poderiam, 

em estudos futuros, ser exploradas para oferecer explicações mais ricas e atualizadas 

sobre características agronômicas, nutricionais ou de mercado das pimentas, a partir 

de um repositório ampliado de fontes. Ao mesmo tempo, a adoção desse tipo de 

solução exigiria lidar com questões de custo computacional, curadoria e atualização 

de conteúdo, controle de alucinações e governança das fontes utilizadas, o que 

justifica a opção inicial por um chat determinístico e controlado nesta fase da 

pesquisa. 

5.4 Recomendações para trabalhos futuros 

No eixo de dados e modelagem, uma prioridade é a ampliação do dataset para 

incluir mais variedades de pimentas, diferentes estágios de maturação, múltiplos 

mercados e condições sazonais diversas. A incorporação de imagens capturadas por 

diferentes dispositivos e em diferentes horários pode contribuir para tornar o modelo 

mais resistente a variações de iluminação e enquadramento. Estudos posteriores 

também podem investigar estratégias de data augmentation específicas para 

classificação fina e avaliar, de forma sistemática, quais transformações preservam ou 

reforçam pistas morfológicas relevantes para a distinção entre classes semelhantes. 

Outra possibilidade é a exploração de arquiteturas alternativas ou 

complementares ao YOLOv8m, como versões mais recentes da família YOLO ou 

abordagens multimodais que integrem informações visuais e textuais (por exemplo, 

rótulos, anotações de caixas, descrição do lote). A comparação entre diferentes 

modelos poderia ser conduzida com base em métricas padronizadas e em cenários 

de uso alinhados à literatura de avaliação de detectores em agricultura. 

Quanto à interação e à adoção, recomenda-se aprofundar estudos com usuários 

em diferentes perfis (classificadores, comerciantes, técnicos de qualidade, 

estudantes), com a combinação de métodos quantitativos (questionários 



 

 
 
 

70 
 

 

estruturados, experimentos controlados) e qualitativos (entrevistas, observação em 

campo) para compreender não apenas se o protótipo é percebido como útil, mas 

como ele se integra, ou não, às rotinas de trabalho. Esses estudos poderiam explorar, 

por exemplo, o papel do aplicativo em ações de formação, na comunicação com 

compradores ou na padronização de terminologias de pimentas. 

Por fim, ao considerar o debate sobre ciência aberta e serviços digitais em 

agricultura, trabalhos futuros podem avançar na disponibilização do dataset e do 

código-fonte em repositórios públicos, com documentação mais detalhada e 

discussão de modelos de governança para manutenção, atualização e eventual 

ampliação colaborativa do repositório de imagens e do conjunto de classes. 

5.5 Considerações finais 

Os resultados obtidos ao longo desta pesquisa evidenciam que os objetivos 

propostos foram alcançados. A utilização da arquitetura YOLOv8 permitiu o 

desenvolvimento e a avaliação de um modelo de detecção automática para a 

identificação de diferentes variedades de Capsicum spp. em ambientes comerciais de 

maior complexidade, caracterizados por variações de iluminação, sobreposição de 

objetos e diversidade visual. As análises realizadas sugerem um desempenho 

adequado do modelo diante dos desafios observados nesses cenários. Ademais, a 

integração da solução a um protótipo de aplicativo móvel demonstrou a possibilidade 

de uso prático da abordagem proposta, apontando para seu potencial de aplicação 

em contextos reais. 

Ao longo deste trabalho, a construção e o teste do protótipo App Pimentas 

permitiram discutir, em um caso concreto, como técnicas recentes de visão 

computacional podem ser articuladas a necessidades específicas de um contexto 

agroalimentar, que envolve classificação de produtos e disseminação de informações 

de forma acessível. Em vez de oferecer uma solução fechada, o estudo buscou 

organizar um caminho de projeto, desde o planejamento do dataset até a implantação 

em ambiente web, que possa ser reaproveitado, criticado e estendido por outros 

pesquisadores e praticantes. 

Sob a lente da Design Science Research, o artefato desenvolvido funciona como 

um mediador entre o conhecimento técnico sobre redes neurais convolucionais, 

modelos YOLO e arquiteturas web, e o conhecimento prático de quem lida 
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diariamente com a comercialização de pimentas e outros hortigranjeiros. Nessa 

mediação, algumas questões foram respondidas, como a viabilidade de uso de 

YOLOv8 nesse domínio e a possibilidade de oferecer uma interface PWA acessível. 

Outras foram abertas, sobretudo no que diz respeito ao escalonamento da solução, à 

ampliação do conjunto de classes e à consolidação de evidências de impacto em 

processos de trabalho. 

Espera-se que as reflexões e os procedimentos aqui sistematizados possam 

apoiar não apenas futuras pesquisas acadêmicas, mas também iniciativas práticas 

interessadas em aproximar visão computacional, agricultura e serviços digitais de 

forma cuidadosa, gradual e sensível ao contexto. 
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APÊNDICE A – Questionário de validação do protótipo do aplicativo App Pimentas 
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APÊNDICE B – Acesso ao repositório GitHub do App Pimentas 
 

Este apêndice apresenta as informações necessárias para acesso ao repositório 

de código-fonte utilizado no desenvolvimento do protótipo do aplicativo App Pimentas. 

▪ Plataforma: GitHub 

▪ Endereço do repositório: https://github.com/divinomadalena8-

crypto/pimentas-api 

▪ Branch de referência: main 

▪ Commit utilizado na dissertação: 

203a1cfdc499f1ac1124c9de7e906881aee98743 

▪ Data de acesso/validação do repositório: 11 nov. 2025 

O repositório contém: 

▪ código-fonte do backend em FastAPI; 

▪ arquivos da interface web (HTML, CSS, JavaScript, manifesto e 

service worker); 

▪ arquivo requirements.txt com as dependências necessárias; 

▪ arquivos de configuração e documentação mínima para execução 

local. 
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